-
Notifications
You must be signed in to change notification settings - Fork 76
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add demo for fault tolerant label semantic role and machine translation. #300
Merged
Merged
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,3 +2,4 @@ | |
*.crt | ||
.cache | ||
vendor | ||
*~ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
import os | ||
import math | ||
import numpy as np | ||
import paddle.v2 as paddle | ||
import paddle.v2.dataset.conll05 as conll05 | ||
import paddle.v2.evaluator as evaluator | ||
from paddle.v2.reader.creator import cloud_reader | ||
|
||
master_ip = os.getenv("MASTER_IP") | ||
etcd_endpoint = "http://" + master_ip + ":" + "2379" | ||
|
||
word_dict, verb_dict, label_dict = conll05.get_dict() | ||
word_dict_len = len(word_dict) | ||
label_dict_len = len(label_dict) | ||
pred_len = len(verb_dict) | ||
|
||
mark_dict_len = 2 | ||
word_dim = 32 | ||
mark_dim = 5 | ||
hidden_dim = 512 | ||
depth = 8 | ||
default_std = 1 / math.sqrt(hidden_dim) / 3.0 | ||
mix_hidden_lr = 1e-3 | ||
|
||
|
||
def d_type(size): | ||
return paddle.data_type.integer_value_sequence(size) | ||
|
||
|
||
def db_lstm(): | ||
#8 features | ||
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) | ||
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) | ||
|
||
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) | ||
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) | ||
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) | ||
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) | ||
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) | ||
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) | ||
|
||
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True) | ||
std_0 = paddle.attr.Param(initial_std=0.) | ||
std_default = paddle.attr.Param(initial_std=default_std) | ||
|
||
predicate_embedding = paddle.layer.embedding( | ||
size=word_dim, | ||
input=predicate, | ||
param_attr=paddle.attr.Param(name='vemb', initial_std=default_std)) | ||
mark_embedding = paddle.layer.embedding( | ||
size=mark_dim, input=mark, param_attr=std_0) | ||
|
||
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] | ||
emb_layers = [ | ||
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para) | ||
for x in word_input | ||
] | ||
emb_layers.append(predicate_embedding) | ||
emb_layers.append(mark_embedding) | ||
|
||
hidden_0 = paddle.layer.mixed( | ||
size=hidden_dim, | ||
bias_attr=std_default, | ||
input=[ | ||
paddle.layer.full_matrix_projection( | ||
input=emb, param_attr=std_default) for emb in emb_layers | ||
]) | ||
|
||
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) | ||
hidden_para_attr = paddle.attr.Param( | ||
initial_std=default_std, learning_rate=mix_hidden_lr) | ||
|
||
lstm_0 = paddle.layer.lstmemory( | ||
input=hidden_0, | ||
act=paddle.activation.Relu(), | ||
gate_act=paddle.activation.Sigmoid(), | ||
state_act=paddle.activation.Sigmoid(), | ||
bias_attr=std_0, | ||
param_attr=lstm_para_attr) | ||
|
||
#stack L-LSTM and R-LSTM with direct edges | ||
input_tmp = [hidden_0, lstm_0] | ||
|
||
for i in range(1, depth): | ||
mix_hidden = paddle.layer.mixed( | ||
size=hidden_dim, | ||
bias_attr=std_default, | ||
input=[ | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[0], param_attr=hidden_para_attr), | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[1], param_attr=lstm_para_attr) | ||
]) | ||
|
||
lstm = paddle.layer.lstmemory( | ||
input=mix_hidden, | ||
act=paddle.activation.Relu(), | ||
gate_act=paddle.activation.Sigmoid(), | ||
state_act=paddle.activation.Sigmoid(), | ||
reverse=((i % 2) == 1), | ||
bias_attr=std_0, | ||
param_attr=lstm_para_attr) | ||
|
||
input_tmp = [mix_hidden, lstm] | ||
|
||
feature_out = paddle.layer.mixed( | ||
size=label_dict_len, | ||
bias_attr=std_default, | ||
input=[ | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[0], param_attr=hidden_para_attr), | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[1], param_attr=lstm_para_attr) | ||
], ) | ||
|
||
return feature_out | ||
|
||
|
||
def load_parameter(file_name, h, w): | ||
with open(file_name, 'rb') as f: | ||
f.read(16) # skip header. | ||
return np.fromfile(f, dtype=np.float32).reshape(h, w) | ||
|
||
|
||
def main(): | ||
paddle.init() | ||
|
||
# define network topology | ||
feature_out = db_lstm() | ||
target = paddle.layer.data(name='target', type=d_type(label_dict_len)) | ||
crf_cost = paddle.layer.crf( | ||
size=label_dict_len, | ||
input=feature_out, | ||
label=target, | ||
param_attr=paddle.attr.Param( | ||
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr)) | ||
|
||
crf_dec = paddle.layer.crf_decoding( | ||
size=label_dict_len, | ||
input=feature_out, | ||
label=target, | ||
param_attr=paddle.attr.Param(name='crfw')) | ||
evaluator.sum(input=crf_dec) | ||
|
||
# create parameters | ||
parameters = paddle.parameters.create(crf_cost) | ||
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32)) | ||
|
||
# create optimizer | ||
optimizer = paddle.optimizer.Momentum( | ||
momentum=0, | ||
learning_rate=2e-2, | ||
regularization=paddle.optimizer.L2Regularization(rate=8e-4), | ||
model_average=paddle.optimizer.ModelAverage( | ||
average_window=0.5, max_average_window=10000), ) | ||
|
||
trainer = paddle.trainer.SGD( | ||
cost=crf_cost, | ||
parameters=parameters, | ||
update_equation=optimizer, | ||
extra_layers=crf_dec) | ||
|
||
reader = paddle.batch( | ||
paddle.reader.shuffle(cloud_reader( | ||
["/pfs/dlnel/public/dataset/conll05/conl105_train-*"], | ||
etcd_endpoint), buf_size=8192), batch_size=10) | ||
|
||
feeding = { | ||
'word_data': 0, | ||
'ctx_n2_data': 1, | ||
'ctx_n1_data': 2, | ||
'ctx_0_data': 3, | ||
'ctx_p1_data': 4, | ||
'ctx_p2_data': 5, | ||
'verb_data': 6, | ||
'mark_data': 7, | ||
'target': 8 | ||
} | ||
|
||
def event_handler(event): | ||
if isinstance(event, paddle.event.EndIteration): | ||
if event.batch_id % 100 == 0: | ||
print "Pass %d, Batch %d, Cost %f, %s" % ( | ||
event.pass_id, event.batch_id, event.cost, event.metrics) | ||
if event.batch_id % 1000 == 0: | ||
result = trainer.test(reader=reader, feeding=feeding) | ||
print "\nTest with Pass %d, Batch %d, %s" % ( | ||
event.pass_id, event.batch_id, result.metrics) | ||
|
||
if isinstance(event, paddle.event.EndPass): | ||
# save parameters | ||
with open('params_pass_%d.tar' % event.pass_id, 'w') as f: | ||
parameters.to_tar(f) | ||
|
||
result = trainer.test(reader=reader, feeding=feeding) | ||
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) | ||
|
||
trainer.train( | ||
reader=reader, | ||
event_handler=event_handler, | ||
num_passes=1, | ||
feeding=feeding) | ||
|
||
test_creator = paddle.dataset.conll05.test() | ||
test_data = [] | ||
for item in test_creator(): | ||
test_data.append(item[0:8]) | ||
if len(test_data) == 1: | ||
break | ||
|
||
predict = paddle.layer.crf_decoding( | ||
size=label_dict_len, | ||
input=feature_out, | ||
param_attr=paddle.attr.Param(name='crfw')) | ||
probs = paddle.infer( | ||
output_layer=predict, | ||
parameters=parameters, | ||
input=test_data, | ||
field='id') | ||
assert len(probs) == len(test_data[0][0]) | ||
labels_reverse = {} | ||
for (k, v) in label_dict.items(): | ||
labels_reverse[v] = k | ||
pre_lab = [labels_reverse[i] for i in probs] | ||
print pre_lab | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Since #278 has already merged, we can use environment variable
ETCD_IP
instead ofMASTER_IP
.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank! Done.