Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add demo for fault tolerant label semantic role and machine translation. #300

Merged
merged 2 commits into from
Aug 14, 2017
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,4 @@
*.crt
.cache
vendor
*~
229 changes: 229 additions & 0 deletions demo/label_semantic_roles/train_ft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
import os
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.evaluator as evaluator
from paddle.v2.reader.creator import cloud_reader

master_ip = os.getenv("MASTER_IP")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Since #278 has already merged, we can use environment variable ETCD_IP instead of MASTER_IP.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank! Done.

etcd_endpoint = "http://" + master_ip + ":" + "2379"

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3


def d_type(size):
return paddle.data_type.integer_value_sequence(size)


def db_lstm():
#8 features
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)

predicate_embedding = paddle.layer.embedding(
size=word_dim,
input=predicate,
param_attr=paddle.attr.Param(name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)

hidden_0 = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])

lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
input=hidden_0,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
bias_attr=std_0,
param_attr=lstm_para_attr)

#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
mix_hidden = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])

lstm = paddle.layer.lstmemory(
input=mix_hidden,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
reverse=((i % 2) == 1),
bias_attr=std_0,
param_attr=lstm_para_attr)

input_tmp = [mix_hidden, lstm]

feature_out = paddle.layer.mixed(
size=label_dict_len,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )

return feature_out


def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)


def main():
paddle.init()

# define network topology
feature_out = db_lstm()
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
crf_cost = paddle.layer.crf(
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))

crf_dec = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
evaluator.sum(input=crf_dec)

# create parameters
parameters = paddle.parameters.create(crf_cost)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

# create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0,
learning_rate=2e-2,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(
cost=crf_cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=crf_dec)

reader = paddle.batch(
paddle.reader.shuffle(cloud_reader(
["/pfs/dlnel/public/dataset/conll05/conl105_train-*"],
etcd_endpoint), buf_size=8192), batch_size=10)

feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
'ctx_0_data': 3,
'ctx_p1_data': 4,
'ctx_p2_data': 5,
'verb_data': 6,
'mark_data': 7,
'target': 8
}

def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if event.batch_id % 1000 == 0:
result = trainer.test(reader=reader, feeding=feeding)
print "\nTest with Pass %d, Batch %d, %s" % (
event.pass_id, event.batch_id, result.metrics)

if isinstance(event, paddle.event.EndPass):
# save parameters
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
parameters.to_tar(f)

result = trainer.test(reader=reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

trainer.train(
reader=reader,
event_handler=event_handler,
num_passes=1,
feeding=feeding)

test_creator = paddle.dataset.conll05.test()
test_data = []
for item in test_creator():
test_data.append(item[0:8])
if len(test_data) == 1:
break

predict = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
param_attr=paddle.attr.Param(name='crfw'))
probs = paddle.infer(
output_layer=predict,
parameters=parameters,
input=test_data,
field='id')
assert len(probs) == len(test_data[0][0])
labels_reverse = {}
for (k, v) in label_dict.items():
labels_reverse[v] = k
pre_lab = [labels_reverse[i] for i in probs]
print pre_lab


if __name__ == '__main__':
main()
Loading