Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Run recognize_digits and understand_sentiment demo with fault tolerant mode. #343

Merged
merged 4 commits into from
Oct 10, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 169 additions & 0 deletions demo/recognize_digits/train_ft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
from PIL import Image
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.common as common
import os
import sys
import glob
import pickle


# NOTE: must change this to your own username on paddlecloud.
USERNAME = "demo"
DC = os.getenv("PADDLE_CLOUD_CURRENT_DATACENTER")
common.DATA_HOME = "/pfs/%s/home/%s" % (DC, USERNAME)
TRAIN_FILES_PATH = os.path.join(common.DATA_HOME, "mnist")
TEST_FILES_PATH = os.path.join(common.DATA_HOME, "mnist")

TRAINER_ID = int(os.getenv("PADDLE_INIT_TRAINER_ID", "-1"))
TRAINER_COUNT = int(os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "-1"))

def prepare_dataset():
# convert will also split the dataset by line-count
common.convert(TRAIN_FILES_PATH,
paddle.dataset.mnist.train(),
8192, "train")
common.convert(TEST_FILES_PATH,
paddle.dataset.mnist.test(),
512, "test")

def cluster_reader_recordio(trainer_id, trainer_count, flag):
'''
read from cloud dataset which is stored as recordio format
each trainer will read a subset of files of the whole dataset.
'''
import recordio
def reader():
PATTERN_STR = "%s-*" % flag
FILES_PATTERN = os.path.join(TRAIN_FILES_PATH, PATTERN_STR)
file_list = glob.glob(FILES_PATTERN)
file_list.sort()
my_file_list = []
# read files for current trainer_id
for idx, f in enumerate(file_list):
if idx % trainer_count == trainer_id:
my_file_list.append(f)
for f in my_file_list:
print "processing ", f
reader = recordio.reader(f)
record_raw = reader.read()
while record_raw:
yield pickle.loads(record_raw)
record_raw = reader.read()
reader.close()
return reader



def softmax_regression(img):
predict = paddle.layer.fc(
input=img, size=10, act=paddle.activation.Softmax())
return predict


def multilayer_perceptron(img):
# The first fully-connected layer
hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu())
# The second fully-connected layer and the according activation function
hidden2 = paddle.layer.fc(
input=hidden1, size=64, act=paddle.activation.Relu())
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict = paddle.layer.fc(
input=hidden2, size=10, act=paddle.activation.Softmax())
return predict


def convolutional_neural_network(img):
# first conv layer
conv_pool_1 = paddle.networks.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
num_channel=1,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# second conv layer
conv_pool_2 = paddle.networks.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
num_channel=20,
pool_size=2,
pool_stride=2,
act=paddle.activation.Relu())
# fully-connected layer
predict = paddle.layer.fc(
input=conv_pool_2, size=10, act=paddle.activation.Softmax())
return predict


def main():
etcd_ip = os.getenv("ETCD_IP")
etcd_endpoint = "http://" + etcd_ip + ":" + "2379"
paddle.init()

# define network topology
images = paddle.layer.data(
name='pixel', type=paddle.data_type.dense_vector(784))
label = paddle.layer.data(
name='label', type=paddle.data_type.integer_value(10))

# Here we can build the prediction network in different ways. Please
# choose one by uncomment corresponding line.
# predict = softmax_regression(images)
# predict = multilayer_perceptron(images)
predict = convolutional_neural_network(images)

cost = paddle.layer.classification_cost(input=predict, label=label)

parameters = paddle.parameters.create(cost)

optimizer = paddle.optimizer.Momentum(
learning_rate=0.1 / 128.0,
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128))

trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=optimizer,
is_local=False,
pserver_spec=etcd_endpoint,
use_etcd=True)

def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=paddle.batch(
cluster_reader_recordio(TRAINER_ID, TRAINER_COUNT, "test"),
batch_size=2))
print "Test with Pass %d, Cost %f, %s\n" % (
event.pass_id, result.cost, result.metrics)

trainer.train(
reader=paddle.batch(
cluster_reader_recordio(TRAINER_ID, TRAINER_COUNT, "train"),
batch_size=128),
event_handler=event_handler,
num_passes=5)

if __name__ == '__main__':
usage = "python train.py [prepare|train]"
if len(sys.argv) != 2:
print usage
exit(1)

if TRAINER_ID == -1 or TRAINER_COUNT == -1:
print "no cloud environ found, must run on cloud"
exit(1)

if sys.argv[1] == "prepare":
prepare_dataset()
elif sys.argv[1] == "train":
main()
229 changes: 229 additions & 0 deletions demo/understand_sentiment/train_ft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.v2 as paddle
import paddle.v2.dataset.common as common
import os
import sys
import glob
import pickle

# NOTE: must change this to your own username on paddlecloud.
USERNAME = "demo"
DC = os.getenv("PADDLE_CLOUD_CURRENT_DATACENTER")
common.DATA_HOME = "/pfs/%s/home/%s" % (DC, USERNAME)
TRAIN_FILES_PATH = os.path.join(common.DATA_HOME, "imdb")
TEST_FILES_PATH = os.path.join(common.DATA_HOME, "imdb")

TRAINER_ID = int(os.getenv("PADDLE_INIT_TRAINER_ID", "-1"))
TRAINER_COUNT = int(os.getenv("PADDLE_INIT_NUM_GRADIENT_SERVERS", "-1"))

def prepare_dataset():
word_dict = paddle.dataset.imdb.word_dict()
# convert will also split the dataset by line-count
common.convert(TRAIN_FILES_PATH,
lambda: paddle.dataset.imdb.train(word_dict),
1000, "train")
common.convert(TEST_FILES_PATH,
lambda: paddle.dataset.imdb.test(word_dict),
1000, "test")

def cluster_reader_recordio(trainer_id, trainer_count, flag):
'''
read from cloud dataset which is stored as recordio format
each trainer will read a subset of files of the whole dataset.
'''
import recordio
def reader():
PATTERN_STR = "%s-*" % flag
FILES_PATTERN = os.path.join(TRAIN_FILES_PATH, PATTERN_STR)
file_list = glob.glob(FILES_PATTERN)
file_list.sort()
my_file_list = []
# read files for current trainer_id
for idx, f in enumerate(file_list):
if idx % trainer_count == trainer_id:
my_file_list.append(f)
for f in my_file_list:
print "processing ", f
reader = recordio.reader(f)
record_raw = reader.read()
while record_raw:
yield pickle.loads(record_raw)
record_raw = reader.read()
reader.close()
return reader



def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim))
emb = paddle.layer.embedding(input=data, size=emb_dim)
conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim)
output = paddle.layer.fc(
input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost


def stacked_lstm_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
consisting three LSTM layers. This configure is referred to
the paper as following url, but use fewer layrs.
http://www.aclweb.org/anthology/P15-1109

input_dim: here is word dictionary dimension.
class_dim: number of categories.
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
"""
assert stacked_num % 2 == 1

layer_attr = paddle.attr.Extra(drop_rate=0.5)
fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
relu = paddle.activation.Relu()
linear = paddle.activation.Linear()

data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim))
emb = paddle.layer.embedding(input=data, size=emb_dim)

fc1 = paddle.layer.fc(
input=emb, size=hid_dim, act=linear, bias_attr=bias_attr)
lstm1 = paddle.layer.lstmemory(
input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
fc = paddle.layer.fc(
input=inputs,
size=hid_dim,
act=linear,
param_attr=para_attr,
bias_attr=bias_attr)
lstm = paddle.layer.lstmemory(
input=fc,
reverse=(i % 2) == 0,
act=relu,
bias_attr=bias_attr,
layer_attr=layer_attr)
inputs = [fc, lstm]

fc_last = paddle.layer.pooling(
input=inputs[0], pooling_type=paddle.pooling.Max())
lstm_last = paddle.layer.pooling(
input=inputs[1], pooling_type=paddle.pooling.Max())
output = paddle.layer.fc(
input=[fc_last, lstm_last],
size=class_dim,
act=paddle.activation.Softmax(),
bias_attr=bias_attr,
param_attr=para_attr)

lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost


def main():
# init
paddle.init()
etcd_ip = os.getenv("ETCD_IP")
etcd_endpoint = "http://" + etcd_ip + ":" + "2379"
#data
print 'load dictionary...'
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
train_reader = paddle.batch(
paddle.reader.shuffle(
cluster_reader_recordio(TRAINER_ID, TRAINER_COUNT, "train"), buf_size=1000),
batch_size=100)
test_reader = paddle.batch(
cluster_reader_recordio(TRAINER_ID, TRAINER_COUNT, "test"), batch_size=100)

feeding = {'word': 0, 'label': 1}

# network config
# Please choose the way to build the network
# by uncommenting the corresponding line.
cost = convolution_net(dict_dim, class_dim=class_dim)
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)

# create parameters
parameters = paddle.parameters.create(cost)

# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=2e-3,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# End batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

# create trainer
trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=adam_optimizer,
is_local=False,
pserver_spec=etcd_endpoint,
use_etcd=True)

trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=2)

if __name__ == '__main__':
usage = "python train.py [prepare|train]"
if len(sys.argv) != 2:
print usage
exit(1)

if TRAINER_ID == -1 or TRAINER_COUNT == -1:
print "no cloud environ found, must run on cloud"
exit(1)

if sys.argv[1] == "prepare":
prepare_dataset()
elif sys.argv[1] == "train":
main()