-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
210 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# Copyright 2021 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import tempfile | ||
import unittest | ||
|
||
from paddlenlp.transformers import SPIECE_UNDERLINE, MBart50Tokenizer | ||
from paddlenlp.transformers.mbart.modeling import shift_tokens_right | ||
|
||
from ...testing_utils import get_tests_dir, nested_simplify | ||
from ..test_tokenizer_common import TokenizerTesterMixin | ||
|
||
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") | ||
|
||
EN_CODE = 250004 | ||
RO_CODE = 250020 | ||
|
||
|
||
class MBart50TokenizationTest(TokenizerTesterMixin, unittest.TestCase): | ||
tokenizer_class = MBart50Tokenizer | ||
test_sentencepiece = True | ||
|
||
test_offsets = False | ||
|
||
def setUp(self): | ||
super().setUp() | ||
|
||
# We have a SentencePiece fixture for testing | ||
tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True) | ||
tokenizer.save_pretrained(self.tmpdirname) | ||
|
||
def test_convert_token_and_id(self): | ||
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" | ||
token = "<s>" | ||
token_id = 0 | ||
|
||
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) | ||
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) | ||
|
||
def test_get_vocab(self): | ||
vocab_keys = list(self.get_tokenizer().get_vocab().keys()) | ||
|
||
self.assertEqual(vocab_keys[0], "<s>") | ||
self.assertEqual(vocab_keys[1], "<pad>") | ||
self.assertEqual(vocab_keys[-1], "<mask>") | ||
self.assertEqual(len(vocab_keys), 1_054) | ||
|
||
def test_vocab_size(self): | ||
self.assertEqual(self.get_tokenizer().vocab_size, 1_054) | ||
|
||
def test_full_tokenizer(self): | ||
tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True) | ||
|
||
tokens = tokenizer.tokenize("This is a test") | ||
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) | ||
|
||
self.assertListEqual( | ||
tokenizer.convert_tokens_to_ids(tokens), | ||
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], | ||
) | ||
|
||
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") | ||
self.assertListEqual( | ||
tokens, | ||
# fmt: off | ||
[ | ||
SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", | ||
SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", | ||
SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", | ||
SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", | ||
SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", | ||
"." | ||
], | ||
# fmt: on | ||
) | ||
ids = tokenizer.convert_tokens_to_ids(tokens) | ||
self.assertListEqual( | ||
ids, | ||
[ | ||
value + tokenizer.fairseq_offset | ||
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] | ||
], | ||
) | ||
|
||
back_tokens = tokenizer.convert_ids_to_tokens(ids) | ||
self.assertListEqual( | ||
back_tokens, | ||
# fmt: off | ||
[ | ||
SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", | ||
SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", | ||
SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", | ||
SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", | ||
SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", | ||
"<unk>", "." | ||
], | ||
# fmt: on | ||
) | ||
|
||
|
||
class MBart50OneToManyIntegrationTest(unittest.TestCase): | ||
checkpoint_name = "mbart-large-50-one-to-many-mmt" | ||
src_text = [ | ||
" UN Chief Says There Is No Military Solution in Syria", | ||
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", | ||
] | ||
tgt_text = [ | ||
"Şeful ONU declară că nu există o soluţie militară în Siria", | ||
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" | ||
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' | ||
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", | ||
] | ||
expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] | ||
|
||
@classmethod | ||
def setUpClass(cls): | ||
cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained( | ||
cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO" | ||
) | ||
cls.pad_token_id = 1 | ||
return cls | ||
|
||
def check_language_codes(self): | ||
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001) | ||
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004) | ||
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020) | ||
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038) | ||
|
||
def test_tokenizer_decode_ignores_language_codes(self): | ||
self.assertIn(RO_CODE, self.tokenizer.all_special_ids) | ||
generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] | ||
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) | ||
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) | ||
self.assertEqual(result, expected_romanian) | ||
self.assertNotIn(self.tokenizer.eos_token, result) | ||
|
||
def test_tokenizer_truncation(self): | ||
src_text = ["this is gunna be a long sentence " * 20] | ||
assert isinstance(src_text[0], str) | ||
desired_max_length = 10 | ||
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] | ||
self.assertEqual(ids[0], EN_CODE) | ||
self.assertEqual(ids[-1], 2) | ||
self.assertEqual(len(ids), desired_max_length) | ||
|
||
def test_mask_token(self): | ||
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001]) | ||
|
||
def test_special_tokens_unaffacted_by_save_load(self): | ||
tmpdirname = tempfile.mkdtemp() | ||
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids | ||
self.tokenizer.save_pretrained(tmpdirname) | ||
new_tok = MBart50Tokenizer.from_pretrained(tmpdirname) | ||
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens) | ||
|
||
def test_seq2seq_max_target_length(self): | ||
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pd") | ||
targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pd") | ||
labels = targets["input_ids"] | ||
batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id) | ||
|
||
self.assertEqual(batch.input_ids.shape[1], 3) | ||
self.assertEqual(batch.decoder_input_ids.shape[1], 10) | ||
|
||
def test_tokenizer_translation(self): | ||
inputs = self.tokenizer._build_translation_inputs( | ||
"A test", return_tensors="pd", src_lang="en_XX", tgt_lang="ar_AR" | ||
) | ||
|
||
self.assertEqual( | ||
nested_simplify(inputs), | ||
{ | ||
# en_XX, A, test, EOS | ||
"input_ids": [[250004, 62, 3034, 2]], | ||
"attention_mask": [[1, 1, 1, 1]], | ||
# ar_AR | ||
"forced_bos_token_id": 250001, | ||
}, | ||
) |