Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
lvdongyi committed Oct 22, 2024
1 parent d46655c commit 3412f50
Show file tree
Hide file tree
Showing 4 changed files with 210 additions and 5 deletions.
6 changes: 2 additions & 4 deletions paddlenlp/transformers/llama/tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,7 @@ def __init__(
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.decode_with_prefix_space = decode_with_prefix_space
# self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
self.sp_model.Load(vocab_file)
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", True))

@property
def vocab_size(self):
Expand All @@ -101,7 +99,7 @@ def bos_token_id(self) -> Optional[int]:
def eos_token_id(self) -> Optional[int]:
return self.sp_model.eos_id()

def get_spm_processor(self, from_slow=False):
def get_spm_processor(self, from_slow=True):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
if from_slow: # no dependency on protobuf
tokenizer.Load(self.vocab_file)
Expand Down
5 changes: 4 additions & 1 deletion paddlenlp/transformers/tokenizer_utils_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1600,7 +1600,10 @@ def _from_pretrained(
from_hf_hub=False,
**kwargs,
):
from_slow = kwargs.get("from_slow", False)
if cls.__name__.endswith("Fast"):
from_slow = kwargs.get("from_slow", False)
else:
from_slow = kwargs.get("from_slow", True)
has_tokenizer_file = resolved_vocab_files.get("tokenizer_file", None) is not None
if (from_slow or not has_tokenizer_file) and cls.slow_tokenizer_class is not None:
slow_tokenizer = (cls.slow_tokenizer_class)._from_pretrained(
Expand Down
13 changes: 13 additions & 0 deletions tests/transformers/mbart50/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
191 changes: 191 additions & 0 deletions tests/transformers/mbart50/test_tokenizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

from paddlenlp.transformers import SPIECE_UNDERLINE, MBart50Tokenizer
from paddlenlp.transformers.mbart.modeling import shift_tokens_right

from ...testing_utils import get_tests_dir, nested_simplify
from ..test_tokenizer_common import TokenizerTesterMixin

SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")

EN_CODE = 250004
RO_CODE = 250020


class MBart50TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = MBart50Tokenizer
test_sentencepiece = True

test_offsets = False

def setUp(self):
super().setUp()

# We have a SentencePiece fixture for testing
tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)

def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "<s>"
token_id = 0

self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())

self.assertEqual(vocab_keys[0], "<s>")
self.assertEqual(vocab_keys[1], "<pad>")
self.assertEqual(vocab_keys[-1], "<mask>")
self.assertEqual(len(vocab_keys), 1_054)

def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 1_054)

def test_full_tokenizer(self):
tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)

tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])

self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
)

tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
# fmt: off
[
SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",",
SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é",
"."
],
# fmt: on
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
],
)

back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
# fmt: off
[
SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",",
SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s",
"<unk>", "."
],
# fmt: on
)


class MBart50OneToManyIntegrationTest(unittest.TestCase):
checkpoint_name = "mbart-large-50-one-to-many-mmt"
src_text = [
" UN Chief Says There Is No Military Solution in Syria",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
tgt_text = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]

@classmethod
def setUpClass(cls):
cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained(
cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
)
cls.pad_token_id = 1
return cls

def check_language_codes(self):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038)

def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_romanian)
self.assertNotIn(self.tokenizer.eos_token, result)

def test_tokenizer_truncation(self):
src_text = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0], str)
desired_max_length = 10
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
self.assertEqual(ids[0], EN_CODE)
self.assertEqual(ids[-1], 2)
self.assertEqual(len(ids), desired_max_length)

def test_mask_token(self):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001])

def test_special_tokens_unaffacted_by_save_load(self):
tmpdirname = tempfile.mkdtemp()
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(tmpdirname)
new_tok = MBart50Tokenizer.from_pretrained(tmpdirname)
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)

def test_seq2seq_max_target_length(self):
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pd")
targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pd")
labels = targets["input_ids"]
batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.decoder_input_ids.shape[1], 10)

def test_tokenizer_translation(self):
inputs = self.tokenizer._build_translation_inputs(
"A test", return_tensors="pd", src_lang="en_XX", tgt_lang="ar_AR"
)

self.assertEqual(
nested_simplify(inputs),
{
# en_XX, A, test, EOS
"input_ids": [[250004, 62, 3034, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 250001,
},
)

0 comments on commit 3412f50

Please sign in to comment.