-
Notifications
You must be signed in to change notification settings - Fork 2.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
925 additions
and
278 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" NeZha model configuration""" | ||
from __future__ import annotations | ||
|
||
from typing import Dict | ||
|
||
from ..configuration_utils import PretrainedConfig | ||
|
||
__all__ = ["NEZHA_PRETRAINED_INIT_CONFIGURATION", "NeZhaConfig", "NEZHA_PRETRAINED_RESOURCE_FILES_MAP"] | ||
|
||
NEZHA_PRETRAINED_INIT_CONFIGURATION = { | ||
"nezha-base-chinese": { | ||
"vocab_size": 21128, | ||
"hidden_size": 768, | ||
"num_hidden_layers": 12, | ||
"num_attention_heads": 12, | ||
"intermediate_size": 3072, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"attention_probs_dropout_prob": 0.1, | ||
"max_position_embeddings": 512, | ||
"max_relative_position": 64, | ||
"type_vocab_size": 2, | ||
"initializer_range": 0.02, | ||
"use_relative_position": True, | ||
}, | ||
"nezha-large-chinese": { | ||
"vocab_size": 21128, | ||
"hidden_size": 1024, | ||
"num_hidden_layers": 24, | ||
"num_attention_heads": 16, | ||
"intermediate_size": 4096, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"attention_probs_dropout_prob": 0.1, | ||
"max_position_embeddings": 512, | ||
"max_relative_position": 64, | ||
"type_vocab_size": 2, | ||
"initializer_range": 0.02, | ||
"use_relative_position": True, | ||
}, | ||
"nezha-base-wwm-chinese": { | ||
"vocab_size": 21128, | ||
"hidden_size": 768, | ||
"num_hidden_layers": 12, | ||
"num_attention_heads": 12, | ||
"intermediate_size": 3072, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"attention_probs_dropout_prob": 0.1, | ||
"max_position_embeddings": 512, | ||
"max_relative_position": 64, | ||
"type_vocab_size": 2, | ||
"initializer_range": 0.02, | ||
"use_relative_position": True, | ||
}, | ||
"nezha-large-wwm-chinese": { | ||
"vocab_size": 21128, | ||
"hidden_size": 1024, | ||
"num_hidden_layers": 24, | ||
"num_attention_heads": 16, | ||
"intermediate_size": 4096, | ||
"hidden_act": "gelu", | ||
"hidden_dropout_prob": 0.1, | ||
"attention_probs_dropout_prob": 0.1, | ||
"max_position_embeddings": 512, | ||
"max_relative_position": 64, | ||
"type_vocab_size": 2, | ||
"initializer_range": 0.02, | ||
"use_relative_position": True, | ||
}, | ||
} | ||
NEZHA_PRETRAINED_RESOURCE_FILES_MAP = { | ||
"model_state": { | ||
"nezha-base-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-base-chinese.pdparams", | ||
"nezha-large-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-large-chinese.pdparams", | ||
"nezha-base-wwm-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-base-wwm-chinese.pdparams", | ||
"nezha-large-wwm-chinese": "https://bj.bcebos.com/paddlenlp/models/transformers/nezha/nezha-large-wwm-chinese.pdparams", | ||
} | ||
} | ||
|
||
|
||
class NeZhaConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha | ||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | ||
defaults will yield a similar configuration to that of the Nezha | ||
[sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, optional, defaults to 21128): | ||
Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the | ||
*inputs_ids* passed to the forward method of [`NezhaModel`]. | ||
embedding_size (`int`, optional, defaults to 128): | ||
Dimensionality of vocabulary embeddings. | ||
hidden_size (`int`, optional, defaults to 768): | ||
Dimensionality of the encoder layers and the pooler layer. | ||
num_hidden_layers (`int`, optional, defaults to 12): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, optional, defaults to 12): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
intermediate_size (`int`, optional, defaults to 3072): | ||
The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | ||
hidden_act (`str` or `function`, optional, defaults to "gelu"): | ||
The non-linear activation function (function or string) in the encoder and pooler. | ||
hidden_dropout_prob (`float`, optional, defaults to 0.1): | ||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_probs_dropout_prob (`float`, optional, defaults to 0.1): | ||
The dropout ratio for the attention probabilities. | ||
max_position_embeddings (`int`, optional, defaults to 512): | ||
The maximum sequence length that this model might ever be used with. Typically set this to something large | ||
(e.g., 512 or 1024 or 2048). | ||
type_vocab_size (`int`, optional, defaults to 2): | ||
The vocabulary size of the *token_type_ids* passed into [`NezhaModel`]. | ||
initializer_range (`float`, optional, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, optional, defaults to 1e-12): | ||
The epsilon used by the layer normalization layers. | ||
classifier_dropout (`float`, optional, defaults to 0.1): | ||
The dropout ratio for attached classifiers. | ||
is_decoder (`bool`, *optional*, defaults to `False`): | ||
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | ||
Example: | ||
```python | ||
>>> from paddlenlp.transformers import NeZhaConfig, NeZhaModel | ||
>>> # Initializing an Nezha configuration | ||
>>> configuration = NeZhaConfig() | ||
>>> # Initializing a model (with random weights) from the Nezha-base style configuration model | ||
>>> model = NeZhaModel(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
attribute_map: Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} | ||
pretrained_init_configuration = NEZHA_PRETRAINED_INIT_CONFIGURATION | ||
model_type = "nezha" | ||
|
||
def __init__( | ||
self, | ||
vocab_size=21128, | ||
embedding_size=128, | ||
hidden_size=768, | ||
num_hidden_layers=12, | ||
num_attention_heads=12, | ||
intermediate_size=3072, | ||
hidden_act="gelu", | ||
hidden_dropout_prob=0.1, | ||
attention_probs_dropout_prob=0.1, | ||
max_position_embeddings=512, | ||
max_relative_position=64, | ||
type_vocab_size=2, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-12, | ||
classifier_dropout=0.1, | ||
pad_token_id=0, | ||
bos_token_id=2, | ||
eos_token_id=3, | ||
use_cache=True, | ||
**kwargs | ||
): | ||
super().__init__(pad_token_id=pad_token_id, **kwargs) | ||
|
||
self.vocab_size = vocab_size | ||
self.embedding_size = embedding_size | ||
self.hidden_size = hidden_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.hidden_act = hidden_act | ||
self.intermediate_size = intermediate_size | ||
self.hidden_dropout_prob = hidden_dropout_prob | ||
self.attention_probs_dropout_prob = attention_probs_dropout_prob | ||
self.max_position_embeddings = max_position_embeddings | ||
self.max_relative_position = max_relative_position | ||
self.type_vocab_size = type_vocab_size | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.classifier_dropout = classifier_dropout | ||
self.use_cache = use_cache |
Oops, something went wrong.