-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add soft link from examples to application (#3587)
- Loading branch information
Showing
25 changed files
with
8 additions
and
3,198 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,15 +1,15 @@ | ||
# 文本分类 | ||
|
||
提供了多个文本分类任务示例,基于传统序列模型的二分类,基于预训练模型的二分类和基于预训练模型的多标签文本分类。 | ||
提供了多个文本分类任务示例,基于基于ERNIE 3.0预训练模型、传统序列模型、基于ERNIE-Doc超长文本预训练模型的文本分类。 | ||
|
||
## RNN Models | ||
## Pretrained Model (PTMs) | ||
|
||
[Recurrent Neural Networks](./rnn) 展示了如何使用传统序列模型RNN、LSTM、GRU等网络完成文本分类任务。 | ||
[Pretrained Models](./pretrained_models) 展示了如何使用以ERNIE 3.0 为代表的预模型,在多分类、多标签、层次分类场景下,基于预训练模型微调、提示学习(小样本)、语义索引等三种不同方案进行文本分类。预训练模型文本分类打通数据标注-模型训练-模型调优-模型压缩-预测部署全流程,旨在解决细分场景应用的痛点和难点,快速实现文本分类产品落地。 | ||
|
||
## Pretrained Model (PTMs) | ||
## RNN Models | ||
|
||
[Pretrained Models](./pretrained_models) 展示了如何使用以ERNIE为代表的模型Fine-tune完成文本分类任务。 | ||
[Recurrent Neural Networks](./rnn) 展示了如何使用传统序列模型RNN、LSTM、GRU等网络完成文本分类任务。 | ||
|
||
## Multi-label Text Classification | ||
## ERNIE-Doc Text Classification | ||
|
||
[Multi-label Text Classification](./multi_label) 展示了如何使用以Bert为代表的预训练模型完成多标签文本分类任务。 | ||
[ERNIE-Doc Text Classification](./ernie-doc) 展示了如何使用预训练模型ERNIE-Doc完成**超长文本**分类任务。 |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.