Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Retrieval based multi label classification #3656

Merged
merged 9 commits into from
Nov 16, 2022
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
506 changes: 506 additions & 0 deletions applications/text_classification/multi_label/retrieval_based/README.md

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
import sys

import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class SemanticIndexBase(nn.Layer):

def __init__(self, pretrained_model, dropout=None, output_emb_size=None):
super().__init__()
self.ptm = pretrained_model
self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)

# if output_emb_size is not None, then add Linear layer to reduce embedding_size,
# we recommend set output_emb_size = 256 considering the trade-off beteween
# recall performance and efficiency

self.output_emb_size = output_emb_size
if output_emb_size > 0:
weight_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(std=0.02))
self.emb_reduce_linear = paddle.nn.Linear(768,
output_emb_size,
weight_attr=weight_attr)

def get_pooled_embedding(self,
input_ids,
token_type_ids=None,
position_ids=None,
attention_mask=None):
_, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids,
attention_mask)
if self.output_emb_size > 0:
cls_embedding = self.emb_reduce_linear(cls_embedding)
cls_embedding = self.dropout(cls_embedding)
cls_embedding = F.normalize(cls_embedding, p=2, axis=-1)
return cls_embedding

def get_semantic_embedding(self, data_loader):
self.eval()
with paddle.no_grad():
for batch_data in data_loader:
input_ids, token_type_ids = batch_data
text_embeddings = self.get_pooled_embedding(
input_ids, token_type_ids=token_type_ids)
yield text_embeddings

def cosine_sim(self,
query_input_ids,
title_input_ids,
query_token_type_ids=None,
query_position_ids=None,
query_attention_mask=None,
title_token_type_ids=None,
title_position_ids=None,
title_attention_mask=None):

query_cls_embedding = self.get_pooled_embedding(query_input_ids,
query_token_type_ids,
query_position_ids,
query_attention_mask)

title_cls_embedding = self.get_pooled_embedding(title_input_ids,
title_token_type_ids,
title_position_ids,
title_attention_mask)

cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding,
axis=-1)
return cosine_sim

@abc.abstractmethod
def forward(self):
pass


class SemanticIndexBaseStatic(nn.Layer):

def __init__(self, pretrained_model, dropout=None, output_emb_size=None):
super().__init__()
self.ptm = pretrained_model
self.dropout = nn.Dropout(dropout if dropout is not None else 0.1)

# if output_emb_size is not None, then add Linear layer to reduce embedding_size,
# we recommend set output_emb_size = 256 considering the trade-off beteween
# recall performance and efficiency

self.output_emb_size = output_emb_size
if output_emb_size > 0:
weight_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(std=0.02))
self.emb_reduce_linear = paddle.nn.Linear(768,
output_emb_size,
weight_attr=weight_attr)

@paddle.jit.to_static(input_spec=[
paddle.static.InputSpec(shape=[None, None], dtype='int64'),
paddle.static.InputSpec(shape=[None, None], dtype='int64')
])
def get_pooled_embedding(self,
input_ids,
token_type_ids=None,
position_ids=None,
attention_mask=None):
_, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids,
attention_mask)

if self.output_emb_size > 0:
cls_embedding = self.emb_reduce_linear(cls_embedding)
cls_embedding = self.dropout(cls_embedding)
cls_embedding = F.normalize(cls_embedding, p=2, axis=-1)

return cls_embedding

def get_semantic_embedding(self, data_loader):
self.eval()
with paddle.no_grad():
for batch_data in data_loader:
input_ids, token_type_ids = batch_data

text_embeddings = self.get_pooled_embedding(
input_ids, token_type_ids=token_type_ids)

yield text_embeddings

def cosine_sim(self,
query_input_ids,
title_input_ids,
query_token_type_ids=None,
query_position_ids=None,
query_attention_mask=None,
title_token_type_ids=None,
title_position_ids=None,
title_attention_mask=None):

query_cls_embedding = self.get_pooled_embedding(query_input_ids,
query_token_type_ids,
query_position_ids,
query_attention_mask)

title_cls_embedding = self.get_pooled_embedding(title_input_ids,
title_token_type_ids,
title_position_ids,
title_attention_mask)

cosine_sim = paddle.sum(query_cls_embedding * title_cls_embedding,
axis=-1)
return cosine_sim

def forward(self,
input_ids,
token_type_ids=None,
position_ids=None,
attention_mask=None):
_, cls_embedding = self.ptm(input_ids, token_type_ids, position_ids,
attention_mask)

if self.output_emb_size > 0:
cls_embedding = self.emb_reduce_linear(cls_embedding)
cls_embedding = self.dropout(cls_embedding)
cls_embedding = F.normalize(cls_embedding, p=2, axis=-1)

return cls_embedding
Loading