Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix LLAMA Inference Bug #6865

Merged
merged 1 commit into from
Aug 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion llm/predictor.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,7 +417,7 @@ def __init__(

self.cache_kvs = [
paddle.zeros(shape, dtype=dtype)
for shape in self.model.get_cache_kvs_shape(self.model.config, config.max_batch_size)
for shape in self.model.get_cache_kvs_shape(self.model.config, config.max_batch_size, config.max_length)
]
self.pre_ids = paddle.full([config.max_batch_size, config.max_length], -1, dtype="int64")
if "chatglm" in self.architectures:
Expand Down
25 changes: 13 additions & 12 deletions paddlenlp/experimental/transformers/chatglm/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -294,18 +294,19 @@ def forward(
new_cache = [None]
hidden_states = self.input_layernorm(hidden_states)

hidden_states, new_cache = self.transformer_block(
input_ids,
hidden_states,
cum_offsets=cum_offsets,
padding_offset=padding_offset,
attn_mask=paddle.cast(attention_mask, dtype=hidden_states.dtype),
caches=cache_kvs,
rotary_embs=paddle.cast(rotary_embeds, "float32"),
rotary_emb_dims=2 if self.config.position_encoding_2d else 1,
seq_lens=seq_lens,
time_step=time_step,
)
with paddle.fluid.framework._stride_in_no_check_dy2st_diff():
hidden_states, new_cache = self.transformer_block(
input_ids,
hidden_states,
cum_offsets=cum_offsets,
padding_offset=padding_offset,
attn_mask=paddle.cast(attention_mask, dtype=hidden_states.dtype),
caches=cache_kvs,
rotary_embs=paddle.cast(rotary_embeds, "float32"),
rotary_emb_dims=2 if self.config.position_encoding_2d else 1,
seq_lens=seq_lens,
time_step=time_step,
)
return (hidden_states, new_cache)

@paddle.no_grad()
Expand Down
10 changes: 5 additions & 5 deletions paddlenlp/experimental/transformers/generation_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ def update_model_kwargs_for_generation(self, cache, just_decoder, next_tokens, e
if cache is None:
# encoder's generation
model_kwargs["tgt_ids"] = paddle.where(just_decoder, model_kwargs["tgt_ids"], next_tokens)
if self.model.config["position_encoding_2d"] and self.model.config.position_encoding_2d is True:
if self.config["position_encoding_2d"] and self.config.position_encoding_2d is True:
tgt_pos = model_kwargs["tgt_pos"]
new_position_id = tgt_pos[:, 0, :].clone()
new_block_id = tgt_pos[:, 1, :].clone()
Expand All @@ -182,7 +182,7 @@ def update_model_kwargs_for_generation(self, cache, just_decoder, next_tokens, e
)
else:
model_kwargs["tgt_ids"] = next_tokens
if self.model.config["position_encoding_2d"] and self.model.config.position_encoding_2d is True:
if self.config["position_encoding_2d"] and self.config.position_encoding_2d is True:
tgt_pos = model_kwargs["tgt_pos"]
new_position_id = tgt_pos[:, 0, :].clone()
new_block_id = tgt_pos[:, 1, :].clone()
Expand Down Expand Up @@ -261,9 +261,9 @@ def _post_process_(outputs, top_p, temperature, step_idx_ori, model_kwargs):
# compute next_tokens, use paddle.top_p_sampling
logits = logits / temperature

_, next_tokens = top_p_sampling(probs, top_p)
_, next_tokens = top_p_sampling(probs, top_p, -1)

if self.model.config.tensor_parallel_degree > 1:
if self.config.tensor_parallel_degree > 1:
paddle.distributed.broadcast(next_tokens, 0)

model_kwargs = self.update_model_kwargs_for_generation(
Expand All @@ -275,7 +275,7 @@ def _post_process_(outputs, top_p, temperature, step_idx_ori, model_kwargs):
batch_idx,
step_idx_ori,
"real_time_save.temp_ids",
self.model.config.tensor_parallel_rank,
self.config.tensor_parallel_rank,
)

return next_tokens, model_kwargs
Expand Down
35 changes: 18 additions & 17 deletions paddlenlp/experimental/transformers/llama/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
from paddlenlp.experimental.transformers.generation_utils import (
GenerationInferenceModel,
)
from paddlenlp.transformers import LlamaConfig, LlamaForCausalLM, LlamaPretrainedModel
from paddlenlp.transformers import LlamaConfig, LlamaPretrainedModel
from paddlenlp.transformers.llama.modeling import LlamaLMHead
from paddlenlp.transformers.model_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
Expand Down Expand Up @@ -200,18 +200,19 @@ def forward(

new_rope = fused_get_rotary_embedding(input_ids, position_ids, self.head_dim_shape_tensor, 0, True)

hidden_states, _ = self.transformer_block(
input_ids,
hidden_states,
cum_offsets=cum_offsets,
padding_offset=padding_offset,
attn_mask=paddle.cast(attention_mask, dtype=hidden_states.dtype),
caches=cache_kvs,
seq_lens=seq_lens,
rotary_embs=new_rope,
rotary_emb_dims=1,
time_step=paddle.increment(paddle.shape(attention_mask)[-1], -1) if is_decoder else None,
)
with paddle.fluid.framework._stride_in_no_check_dy2st_diff():
hidden_states, _ = self.transformer_block(
input_ids,
hidden_states,
cum_offsets=cum_offsets,
padding_offset=padding_offset,
attn_mask=paddle.cast(attention_mask, dtype=hidden_states.dtype),
caches=cache_kvs,
seq_lens=seq_lens,
rotary_embs=new_rope,
rotary_emb_dims=1,
time_step=paddle.increment(paddle.shape(attention_mask)[-1], -1) if is_decoder else None,
)
hidden_states = self.norm(hidden_states)

if output_hidden_states:
Expand Down Expand Up @@ -289,7 +290,7 @@ def set_state_dict(self, state_dict):
)


class LlamaForCausalLMInferenceModel(GenerationInferenceModel, LlamaForCausalLM):
class LlamaForCausalLMInferenceModel(GenerationInferenceModel, LlamaPretrainedModel):
"""
Dynamic Batching for LLaMA Model with pretraining tasks on top.
"""
Expand All @@ -298,7 +299,7 @@ class LlamaForCausalLMInferenceModel(GenerationInferenceModel, LlamaForCausalLM)

def __init__(self, config):
super().__init__(config)
self.model = LlamaInferenceModel(config)
self.llama = LlamaInferenceModel(config)
self.lm_head = LlamaLMHead(config)

@classmethod
Expand Down Expand Up @@ -384,7 +385,7 @@ def forward(
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

outputs = self.model(
outputs = self.llama(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
Expand Down Expand Up @@ -430,4 +431,4 @@ def forward(
def set_state_dict(self, state_dict):
if "lm_head.weight" in state_dict:
self.lm_head.weight.set_value(state_dict["lm_head.weight"])
self.model.set_state_dict({k: state_dict[k] for k in state_dict.keys()})
self.llama.set_state_dict({k: state_dict[k] for k in state_dict.keys()})