Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[New Features] add llm pretrain & lora & sft & prefix_tuning testing scripts #7056

Merged
merged 9 commits into from
Sep 20, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 28 additions & 28 deletions llm/chatglm/sft_argument.json
Original file line number Diff line number Diff line change
@@ -1,29 +1,29 @@
{
"model_name_or_path": "THUDM/chatglm-6b",
"dataset_name_or_path": "./data",
"output_dir": "./checkpoints/chatglm_sft_ckpts",
"per_device_train_batch_size": 4,
"gradient_accumulation_steps": 4,
"per_device_eval_batch_size": 8,
"eval_accumulation_steps":16,
"num_train_epochs": 3,
"learning_rate": 3e-05,
"warmup_steps": 30,
"logging_steps": 1,
"evaluation_strategy": "epoch",
"save_strategy": "epoch",
"src_length": 1024,
"max_length": 2048,
"fp16": true,
"fp16_opt_level": "O2",
"do_train": true,
"do_eval": true,
"disable_tqdm": true,
"load_best_model_at_end": true,
"eval_with_do_generation": false,
"metric_for_best_model": "accuracy",
"recompute": true,
"save_total_limit": 1,
"tensor_parallel_degree": 4,
"pipeline_parallel_degree": 1
}
"model_name_or_path": "THUDM/chatglm-6b",
"dataset_name_or_path": "./data",
"output_dir": "./checkpoints/chatglm_sft_ckpts",
"per_device_train_batch_size": 4,
"gradient_accumulation_steps": 4,
"per_device_eval_batch_size": 8,
"eval_accumulation_steps":16,
"num_train_epochs": 3,
"learning_rate": 3e-05,
"warmup_steps": 30,
"logging_steps": 1,
"evaluation_strategy": "epoch",
"save_strategy": "epoch",
"src_length": 1024,
"max_length": 2048,
"fp16": true,
"fp16_opt_level": "O2",
"do_train": true,
"do_eval": true,
"disable_tqdm": true,
"load_best_model_at_end": true,
"eval_with_do_generation": false,
"metric_for_best_model": "accuracy",
"recompute": true,
"save_total_limit": 1,
"tensor_parallel_degree": 4,
"pipeline_parallel_degree": 1
}
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个是 pre-commit 给 format 的

2 changes: 1 addition & 1 deletion scripts/regression/ci_case.sh
Original file line number Diff line number Diff line change
Expand Up @@ -1083,7 +1083,7 @@ python setup_cuda.py install

echo ' Testing all LLMs '
cd ${nlp_dir}
python -m pytest tests/llm/test_*.py >${log_path}/llm >>${log_path}/llm 2>&1
python -m pytest -v -s tests/llm/test_*.py >${log_path}/llm >>${log_path}/llm 2>&1
print_info $? llm
}
fast_generation(){
Expand Down
56 changes: 56 additions & 0 deletions tests/fixtures/llm/finetune.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
finetune:
base:
dataset_name_or_path: "./data"
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
per_device_eval_batch_size: 8
eval_accumulation_steps: 16
num_train_epochs: 3
learning_rate: 3e-05
warmup_steps: 30
logging_steps: 1
evaluation_strategy: "epoch"
save_strategy: "epoch"
src_length: 1024
max_length: 2048
fp16: true
fp16_opt_level: "O2"
do_train: true
do_eval: true
disable_tqdm: true
load_best_model_at_end: true
eval_with_do_generation: false
metric_for_best_model: "accuracy"
recompute: true
save_total_limit: 1
tensor_parallel_degree: 1
pipeline_parallel_degree: 1
default:
llama:
model_name_or_path: __internal_testing__/tiny-random-llama
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的random和fused区别点是什么?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

因为 fused 模型中的 head_dim 必须是在:10,26,32,64,128 .... 中的一个,所以为了不影响之前的单测,就直接新创建了一个tiny-random 的模型专门用来做 非 fused & fuse 相关的单测

Comment on lines +29 to +30
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

加个baichuan的吧,带alibi的那种

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个交给 @wtmlon 来添加吧。

chatglm:
model_name_or_path: __internal_testing__/tiny-fused-chatglm
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

tiny-fused-chatglm这里的fused指的是什么

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

因为 fused 模型中的 head_dim 必须是在:10,26,32,64,128 .... 中的一个,所以为了不影响之前的单测,就直接新创建了一个tiny-random 的模型专门用来做 非 fused & fuse 相关的单测

chatglm2:
model_name_or_path: __internal_testing__/tiny-random-chatglm2
bloom:
model_name_or_path: __internal_testing__/tiny-fused-bloom

inference-predict:
default:
mode: dynamic
max_length: 20
batch_size: 2
decode_strategy: greedy_search
dtype: float16

inference-to-static:
default:
dtype: float16

inference-infer:
default:
mode: static
dtype: float16
batch_size: 2
decode_strategy: greedy_search
max_length: 20
58 changes: 58 additions & 0 deletions tests/fixtures/llm/lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
lora:
base:
dataset_name_or_path: "./data"
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
per_device_eval_batch_size: 8
eval_accumulation_steps: 16
num_train_epochs: 3
learning_rate: 3e-04
warmup_steps: 30
logging_steps: 1
evaluation_strategy: "epoch"
save_strategy: "epoch"
src_length: 1024
max_length: 2048
fp16: true
fp16_opt_level: "O2"
do_train: true
do_eval: true
disable_tqdm: true
load_best_model_at_end: true
eval_with_do_generation: false
metric_for_best_model: "accuracy"
recompute: true
save_total_limit: 1
tensor_parallel_degree: 1
pipeline_parallel_degree: 1
lora: true

default:
llama:
model_name_or_path: __internal_testing__/tiny-random-llama
chatglm:
model_name_or_path: __internal_testing__/tiny-fused-chatglm
chatglm2:
model_name_or_path: __internal_testing__/tiny-random-chatglm2
bloom:
model_name_or_path: __internal_testing__/tiny-fused-bloom

inference-predict:
default:
mode: dynamic
max_length: 20
batch_size: 2
decode_strategy: greedy_search
dtype: float16

inference-to-static:
default:
dtype: float16

inference-infer:
default:
mode: static
dtype: float16
batch_size: 2
decode_strategy: greedy_search
max_length: 20
60 changes: 60 additions & 0 deletions tests/fixtures/llm/prefix_tuning.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
prefix_tuning:
base:
per_device_train_batch_size: 4
gradient_accumulation_steps: 4
per_device_eval_batch_size: 8
eval_accumulation_steps: 16
num_train_epochs: 3
learning_rate: 3e-02
warmup_steps: 30
logging_steps: 1
evaluation_strategy: "epoch"
save_strategy: "epoch"
src_length: 1024
max_length: 2048
fp16: true
fp16_opt_level: "O2"
do_train: true
do_eval: true
disable_tqdm: true
load_best_model_at_end: true
eval_with_do_generation: false
metric_for_best_model: "accuracy"
recompute: true
save_total_limit: 1
tensor_parallel_degree: 1
pipeline_parallel_degree: 1
prefix_tuning: true

default:
llama:
model_name_or_path: __internal_testing__/tiny-random-llama
chatglm:
model_name_or_path: __internal_testing__/tiny-fused-chatglm
chatglm2:
model_name_or_path: __internal_testing__/tiny-random-chatglm2
bloom:
model_name_or_path: __internal_testing__/tiny-fused-bloom

inference-predict:
default:
mode: dynamic
max_length: 20
batch_size: 2
decode_strategy: greedy_search
dtype: float16
export_precache: true

inference-to-static:
default:
dtype: float16
export_precache: true

inference-infer:
default:
mode: static
dtype: float16
batch_size: 2
decode_strategy: greedy_search
max_length: 20
export_precache: true
15 changes: 9 additions & 6 deletions tests/fixtures/llm/pretrain.yaml
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
pretrain:
default:
model_type: llama
model_name_or_path: __internal_testing__/tiny-random-llama
base:
weight_decay: 0.01
max_steps: 2
save_steps: 2
Expand All @@ -20,7 +18,13 @@ pretrain:
use_flash_attention: 0
use_fused_rms_norm: 0
continue_training: 1

default:
llama:
model_type: llama
model_name_or_path: __internal_testing__/tiny-random-llama
chatglm:
model_type: chatglm
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

chatglm有预训练流程吗?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里是没有的,然后 fine-tune 这里也没有配置 chatglm,我可以把它先删掉。

model_name_or_path: __internal_testing__/tiny-fused-chatglm

inference-predict:
default:
Expand All @@ -40,5 +44,4 @@ inference-infer:
dtype: float16
batch_size: 2
decode_strategy: greedy_search
max_length: 20
enable_compare: false
max_length: 20
89 changes: 89 additions & 0 deletions tests/llm/test_finetune.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import os
import shutil
import sys
import tempfile
import unittest

from parameterized import parameterized_class

from paddlenlp.utils.downloader import get_path_from_url
from tests.testing_utils import argv_context_guard, load_test_config

from .testing_utils import LLMTest


@parameterized_class(
["model_dir", "enable_compare"],
[
["llama", False],
# ["chatglm"],
# ["chatglm2"],
# ["bloom"],
],
)
class FinetuneTest(LLMTest, unittest.TestCase):
config_path: str = "./tests/fixtures/llm/finetune.yaml"
model_dir: str = None

def setUp(self) -> None:
LLMTest.setUp(self)

self.data_dir = tempfile.mkdtemp()
sys.path.insert(0, self.model_dir)

# Run pretrain
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

注释部分看起来有点问题

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

我来改一下。

URL = "https://bj.bcebos.com/paddlenlp/datasets/examples/AdvertiseGen.tar.gz"
get_path_from_url(URL, root_dir=self.data_dir)
self.data_dir = os.path.join(self.data_dir, "data")
self.use_small_datasets()

def use_small_datasets(self):
# use 20 examples
def use_few_examples(file):
with open(os.path.join(self.data_dir, file), "r", encoding="utf8") as f:
lines = [line.strip() for line in f.readlines()]
with open(os.path.join(self.data_dir, file), "w+", encoding="utf8") as f:
f.write("\n".join(lines[:20]))

shutil.copyfile(
os.path.join(self.data_dir, "dev.json"),
os.path.join(self.data_dir, "validation.json"),
)
use_few_examples("train.json")
use_few_examples("dev.json")
use_few_examples("validation.json")

def tearDown(self) -> None:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

除了删除data文件外,模型文件需要删除吗?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

因为是 from_pretrained 的,所以会缓存在 .paddlenlp/models 目录下,应该也没必要删除吧。

LLMTest.tearDown(self)
shutil.rmtree(self.data_dir)

def test_pretrain(self):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个函数看起是来做finetune

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

copy 过来的还没有改,我来调整一下。

finetune_config = load_test_config(self.config_path, "finetune", self.model_dir)

finetune_config["dataset_name_or_path"] = self.data_dir
finetune_config["output_dir"] = self.output_dir

with argv_context_guard(finetune_config):
from finetune_generation import main

main()

if self.model_dir != "opt":
self.run_predictor({"inference_model": True})

self.run_predictor({"inference_model": False})
Loading