Skip to content

release v0.1.0

Compare
Choose a tag to compare
@guru4elephant guru4elephant released this 22 Jun 10:19
· 1989 commits to master since this release
997f8cb

PaddleRec 0.1.0发布

功能:支持一键启动训练,四大可插拔组件,多种训练模式自动兼容

  • Engine:覆盖不同运行平台,含cpu/gpu;单机、分布式(单机PS、单机多卡;PaddleCloud/MPI/K8S下的多机ps、多机多卡);支持不同操作系统(ubuntu/centos/macos/windows)
  • Trainer: 支持组件化自定义训练流程,含ps-transpiler、ps-pslib、collective
  • Model: 支持快速构建新组网,已预置几十种经典模型
  • Reader: 支持高效灵活的数据处理,含slot-feasign数据读取、自定义reader

模型库:

  • 31+推荐算法,基本覆盖推荐各个模块的主流算法:内容理解模型(2),召回模型(7),排序模型(15),多目标模型(3),重排序模型(1),树模型(1),匹配模型(2)

文档:

  • 快速开始:十分钟上手PaddleRec(AIStudio教程) 使用了MovieLens 1M数据集训练了召回+推荐模型,并模拟了在线推荐的全流程。使得用户通过该简单示例能够快速使用PaddleRec的数据处理、训练、预测等功能。
  • 入门教程:数据准备、模型调参、启动训练、启动预测、快速部署
  • 进阶教程:自定义数据处理、自定义模型、自定义训练流程

PaddleRec release 0.1.0

Major Features and Components:

  • Start training with one-line command
  • Training framework with four extensible modules supported
    • Engine: local training and distributed training supported on CPU/GPU on multiple platforms
    • Trainer: support user-defined training logics
    • Model: easy to develop user-defined models and plugin models
    • Reader: high performance data processing with user-defined processing functions.

Model zoos:

  • more than 30 plugin deep learning algorithms in recommendation system pipelines, such as content understanding models, recall models, ranking models, multi-task models, reranking models, tree-based models and matching models, etc.

Documentation

  • Quick start: 10 minutes hands on tutorial with movielens 1M dataset. Users can understand what is going on in recommender system offline training through data processing, training, validation.
  • Basic tutorials, covering data preprocessing, model hyper-parameter tuning, training, prediction, deployment
  • Advanced tutorials, including how to do user-defined data preprocessing, how to write a user-defined network, training pipeline customization.

Special Thanks to our Contributors

xiexionghang (for initial commit contribution)