Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon 5th No.63】Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs #676

Merged
merged 9 commits into from
Nov 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions rfcs/Science/20230929_phycrnet.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# PhyCRNet 设计文档

| | |
|--------------|----------------------------|
| 提交作者 | co63oc |
| 提交时间 | 2023-09-29 |
| RFC 版本号 | v1.0 |
| 依赖飞桨版本 | develop/release 2.5.0 版本 |
| 文件名 | 20230929_phycrnet.md |

## 1. 概述

### 1.1 相关背景

[No.63:PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs](https://github.com/PaddlePaddle/community/blob/master/hackathon/hackathon_5th/%E3%80%90PaddlePaddle%20Hackathon%205th%E3%80%91%E5%BC%80%E6%BA%90%E8%B4%A1%E7%8C%AE%E4%B8%AA%E4%BA%BA%E6%8C%91%E6%88%98%E8%B5%9B%E7%A7%91%E5%AD%A6%E8%AE%A1%E7%AE%97%E4%BB%BB%E5%8A%A1%E5%90%88%E9%9B%86.md#no63phycrnet-physics-informed-convolutional-recurrent-network-for-solving-spatiotemporal-pdes)

用偏微分方程建模的复杂时空系统在许多学科中是普遍存在的,这些学科包括应用数学、物理学、生物学、化学和工程学。解决偏微分方程系统的问题一直是科学计算界的一个关键组成部分。由于大多数物理系统无法获得解析解,近几十年来已经广泛研究和开发了各种数值方法,例如有限差分/元素/体积法和 isogeometric 分析(IGA)法。

本文提出了 PhyCRNet,一种解决空间时间 PDEs 的物理信息卷积循环网络。文章中提出了一种新颖的编码器解码器卷积长短期记忆网络,用于低维空间特征提取和时间演化学习。损失函数被定义为聚合离散 PDE 残差,而初始/边界条件被硬编码在网络中以确保强制满足(例如周期边界填充)。

co63oc marked this conversation as resolved.
Show resolved Hide resolved
### 1.2 功能目标

复现 PhyCRNet 模型

co63oc marked this conversation as resolved.
Show resolved Hide resolved
![image](images/20230929_phycrnet/intro.png)

需要完成的模块包括:

- 蓝色的物理损失函数模块
- BC encoding 模块
- FD based filter 微分模块
- 网络 Encoder, Decoder 模块
- CRNN 卷积层:LSTM 算法

对于物理损失模块:
在此,我们考虑一组多维 (n)、非线性、耦合的参数设置下的偏微分方程 (PDE) 系统的通用形式:
co63oc marked this conversation as resolved.
Show resolved Hide resolved

$$
\mathbf{u}_t+\mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \cdots, \nabla_{\mathbf{x}} \mathbf{u}, \nabla_{\mathbf{x}}^2 \mathbf{u}, \nabla_{\mathbf{x}} \mathbf{u} \cdot \mathbf{u}, \cdots ; \boldsymbol{\lambda}\right]=\mathbf{0}
$$

我们的目标是开发基于深度神经网络(DNN)的方法,用于解决给定式中的时空 PDE 系统的正向分析问题。

### 1.3 意义

复现 PhyCRNet 模型,能够使用 PhyCRNet 模型进行推理。

## 2. PaddleScience 现状

PaddleScience 套件暂无 PhyCRNet 模型案例:
- 缺少 FD filter 计算差分模块
- 缺少 LSTM 相关算法
- 缺少 Burgers equation & FitzHugh-Nagumo reaction-diffusion - equations 的算例、数据集和方程

## 3. 目标调研

参考代码 https://github.com/isds-neu/PhyCRNet
论文链接 https://arxiv.org/abs/2106.14103

完成 https://github.com/isds-neu/PhyCRNet/blob/main/README.md 所示部分,复现需要达到原有代码精度,使用PaddleScience复现

## 4. 设计思路与实现方案

参考已有代码实现 PhyCRNet
1. 模型构建
2. 方程构建
3. 计算域构建
4. 约束构建
5. 超参数设定
6. 优化器构建
7. 评估器构建
8. 模型训练、评估

### 4.1 补充说明[可选]


## 5. 测试和验收的考量

原代码使用脚本 Codes/PhyCRNet_burgers.py 运行,复现需要达到原有代码精度,并使用 PaddleScience 复现
co63oc marked this conversation as resolved.
Show resolved Hide resolved

## 6. 可行性分析和排期规划

参考代码修改为 paddle 实现,使用 PaddleScience API,测试精度对齐
当前为完善 RFC 文档,开发按具体时间修改。

## 7. 影响面

在 ppsci.arch 下新增 PhyCRNet 模型
Binary file added rfcs/Science/images/20230929_phycrnet/intro.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.