Skip to content

Commit

Permalink
Merge dashpay#557: Eliminate scratch memory used when generating cont…
Browse files Browse the repository at this point in the history
…exts

b3bf5f9 ecmult_impl: expand comment to explain how effective affine interacts with everything (Andrew Poelstra)
efa783f Store z-ratios in the 'x' coord they'll recover (Peter Dettman)
ffd3b34 add `secp256k1_ge_set_all_gej_var` test which deals with many infinite points (Andrew Poelstra)
84740ac ecmult_impl: save one fe_inv_var (Andrew Poelstra)
4704527 ecmult_impl: eliminate scratch memory used when generating context (Andrew Poelstra)
7f7a2ed ecmult_gen_impl: eliminate scratch memory used when generating context (Andrew Poelstra)

Pull request description:

  Builds on dashpay#553

Tree-SHA512: 6031a601a4a476c1d21fc8db219383e7930434d2f199543c61aca0118412322dd814a0109c385ff1f83d16897170dd0c25051697b0f88f15234b0059b661af41
  • Loading branch information
sipa committed Nov 26, 2018
2 parents 314a61d + b3bf5f9 commit e34ceb3
Show file tree
Hide file tree
Showing 6 changed files with 174 additions and 59 deletions.
2 changes: 1 addition & 1 deletion src/bench_ecmult.c
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ int main(int argc, char **argv) {
secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]);
}
}
secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback);
secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS);
free(pubkeys_gej);

for (i = 1; i <= 8; ++i) {
Expand Down
2 changes: 1 addition & 1 deletion src/ecmult_gen_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
secp256k1_ge_set_all_gej_var(prec, precj, 1024);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {
Expand Down
143 changes: 127 additions & 16 deletions src/ecmult_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -137,24 +137,135 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
}

static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp256k1_ge_storage *pre, const secp256k1_gej *a) {
secp256k1_gej d;
secp256k1_ge d_ge, p_ge;
secp256k1_gej pj;
secp256k1_fe zi;
secp256k1_fe zr;
secp256k1_fe dx_over_dz_squared;
int i;

/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
/* Convert them in batch to affine coordinates. */
secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
/* Convert them to compact storage form. */
for (i = 0; i < n; i++) {
secp256k1_ge_to_storage(&pre[i], &prea[i]);
VERIFY_CHECK(!a->infinity);

secp256k1_gej_double_var(&d, a, NULL);

/* First, we perform all the additions in an isomorphic curve obtained by multiplying
* all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use
* `secp256k1_gej_add_ge_var` to perform the additions. For each addition, we store
* the resulting y-coordinate and the z-ratio, since we only have enough memory to
* store two field elements. These are sufficient to efficiently undo the isomorphism
* and recompute all the `x`s.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;

secp256k1_ge_set_gej_zinv(&p_ge, a, &d.z);
pj.x = p_ge.x;
pj.y = p_ge.y;
pj.z = a->z;
pj.infinity = 0;

for (i = 0; i < (n - 1); i++) {
secp256k1_fe_normalize_var(&pj.y);
secp256k1_fe_to_storage(&pre[i].y, &pj.y);
secp256k1_gej_add_ge_var(&pj, &pj, &d_ge, &zr);
secp256k1_fe_normalize_var(&zr);
secp256k1_fe_to_storage(&pre[i].x, &zr);
}

free(prea);
free(prej);
free(zr);
/* Invert d.z in the same batch, preserving pj.z so we can extract 1/d.z */
secp256k1_fe_mul(&zi, &pj.z, &d.z);
secp256k1_fe_inv_var(&zi, &zi);

/* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so
* that we can combine it with the saved z-ratios to compute the other zs
* without any more inversions. */
secp256k1_ge_set_gej_zinv(&p_ge, &pj, &zi);
secp256k1_ge_to_storage(&pre[n - 1], &p_ge);

/* Compute the actual x-coordinate of D, which will be needed below. */
secp256k1_fe_mul(&d.z, &zi, &pj.z); /* d.z = 1/d.z */
secp256k1_fe_sqr(&dx_over_dz_squared, &d.z);
secp256k1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x);

/* Going into the second loop, we have set `pre[n-1]` to its final affine
* form, but still need to set `pre[i]` for `i` in 0 through `n-2`. We
* have `zi = (p.z * d.z)^-1`, where
*
* `p.z` is the z-coordinate of the point on the isomorphic curve
* which was ultimately assigned to `pre[n-1]`.
* `d.z` is the multiplier that must be applied to all z-coordinates
* to move from our isomorphic curve back to secp256k1; so the
* product `p.z * d.z` is the z-coordinate of the secp256k1
* point assigned to `pre[n-1]`.
*
* All subsequent inverse-z-coordinates can be obtained by multiplying this
* factor by successive z-ratios, which is much more efficient than directly
* computing each one.
*
* Importantly, these inverse-zs will be coordinates of points on secp256k1,
* while our other stored values come from computations on the isomorphic
* curve. So in the below loop, we will take care not to actually use `zi`
* or any derived values until we're back on secp256k1.
*/
i = n - 1;
while (i > 0) {
secp256k1_fe zi2, zi3;
const secp256k1_fe *rzr;
i--;

secp256k1_ge_from_storage(&p_ge, &pre[i]);

/* For each remaining point, we extract the z-ratio from the stored
* x-coordinate, compute its z^-1 from that, and compute the full
* point from that. */
rzr = &p_ge.x;
secp256k1_fe_mul(&zi, &zi, rzr);
secp256k1_fe_sqr(&zi2, &zi);
secp256k1_fe_mul(&zi3, &zi2, &zi);
/* To compute the actual x-coordinate, we use the stored z ratio and
* y-coordinate, which we obtained from `secp256k1_gej_add_ge_var`
* in the loop above, as well as the inverse of the square of its
* z-coordinate. We store the latter in the `zi2` variable, which is
* computed iteratively starting from the overall Z inverse then
* multiplying by each z-ratio in turn.
*
* Denoting the z-ratio as `rzr`, we observe that it is equal to `h`
* from the inside of the above `gej_add_ge_var` call. This satisfies
*
* rzr = d_x * z^2 - x * d_z^2
*
* where (`d_x`, `d_z`) are Jacobian coordinates of `D` and `(x, z)`
* are Jacobian coordinates of our desired point -- except both are on
* the isomorphic curve that we were using when we called `gej_add_ge_var`.
* To get back to secp256k1, we must multiply both `z`s by `d_z`, or
* equivalently divide both `x`s by `d_z^2`. Our equation then becomes
*
* rzr = d_x * z^2 / d_z^2 - x
*
* (The left-hand-side, being a ratio of z-coordinates, is unaffected
* by the isomorphism.)
*
* Rearranging to solve for `x`, we have
*
* x = d_x * z^2 / d_z^2 - rzr
*
* But what we actually want is the affine coordinate `X = x/z^2`,
* which will satisfy
*
* X = d_x / d_z^2 - rzr / z^2
* = dx_over_dz_squared - rzr * zi2
*/
secp256k1_fe_mul(&p_ge.x, rzr, &zi2);
secp256k1_fe_negate(&p_ge.x, &p_ge.x, 1);
secp256k1_fe_add(&p_ge.x, &dx_over_dz_squared);
/* y is stored_y/z^3, as we expect */
secp256k1_fe_mul(&p_ge.y, &p_ge.y, &zi3);
/* Store */
secp256k1_ge_to_storage(&pre[i], &p_ge);
}
}

/** The following two macro retrieves a particular odd multiple from a table
Expand Down Expand Up @@ -202,7 +313,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));

/* precompute the tables with odd multiples */
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj);

#ifdef USE_ENDOMORPHISM
{
Expand All @@ -216,7 +327,7 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const
for (i = 0; i < 128; i++) {
secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
}
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j);
}
#endif
}
Expand Down
7 changes: 1 addition & 6 deletions src/group.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,12 +65,7 @@ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);

/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);

/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates (with known z-ratios). zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len);

/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such
Expand Down
57 changes: 27 additions & 30 deletions src/group_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -126,46 +126,43 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
r->y = a->y;
}

static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
secp256k1_fe *az;
secp256k1_fe *azi;
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) {
secp256k1_fe u;
size_t i;
size_t count = 0;
az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
size_t last_i = SIZE_MAX;

for (i = 0; i < len; i++) {
if (!a[i].infinity) {
az[count++] = a[i].z;
/* Use destination's x coordinates as scratch space */
if (last_i == SIZE_MAX) {
r[i].x = a[i].z;
} else {
secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z);
}
last_i = i;
}
}
if (last_i == SIZE_MAX) {
return;
}
secp256k1_fe_inv_var(&u, &r[last_i].x);

azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
secp256k1_fe_inv_all_var(azi, az, count);
free(az);

count = 0;
for (i = 0; i < len; i++) {
r[i].infinity = a[i].infinity;
i = last_i;
while (i > 0) {
i--;
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u);
secp256k1_fe_mul(&u, &u, &a[last_i].z);
last_i = i;
}
}
free(azi);
}
VERIFY_CHECK(!a[last_i].infinity);
r[last_i].x = u;

static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
size_t i = len - 1;
secp256k1_fe zi;

if (len > 0) {
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
secp256k1_fe_inv(&zi, &a[i].z);
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);

/* Work out way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
secp256k1_fe_mul(&zi, &zi, &zr[i]);
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
for (i = 0; i < len; i++) {
r[i].infinity = a[i].infinity;
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x);
}
}
}
Expand Down
22 changes: 17 additions & 5 deletions src/tests.c
Original file line number Diff line number Diff line change
Expand Up @@ -2095,28 +2095,40 @@ void test_ge(void) {
/* Test batch gej -> ge conversion with and without known z ratios. */
{
secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe));
secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
for (i = 0; i < 4 * runs + 1; i++) {
/* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
if (i < 4 * runs) {
secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
}
}
secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1);
secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback);
secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1);
for (i = 0; i < 4 * runs + 1; i++) {
secp256k1_fe s;
random_fe_non_zero(&s);
secp256k1_gej_rescale(&gej[i], &s);
ge_equals_gej(&ge_set_table[i], &gej[i]);
ge_equals_gej(&ge_set_all[i], &gej[i]);
}
free(ge_set_table);
free(ge_set_all);
free(zr);
}

/* Test batch gej -> ge conversion with many infinities. */
for (i = 0; i < 4 * runs + 1; i++) {
random_group_element_test(&ge[i]);
/* randomly set half the points to infinitiy */
if(secp256k1_fe_is_odd(&ge[i].x)) {
secp256k1_ge_set_infinity(&ge[i]);
}
secp256k1_gej_set_ge(&gej[i], &ge[i]);
}
/* batch invert */
secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1);
/* check result */
for (i = 0; i < 4 * runs + 1; i++) {
ge_equals_gej(&ge[i], &gej[i]);
}

free(ge);
free(gej);
free(zinv);
Expand Down

0 comments on commit e34ceb3

Please sign in to comment.