Skip to content

Commit

Permalink
DEPR/API: Revert handling of i8values to DatetimeIndex (pandas-dev#24708
Browse files Browse the repository at this point in the history
)
  • Loading branch information
TomAugspurger authored and Pingviinituutti committed Feb 28, 2019
1 parent e41b2f0 commit 43fe741
Show file tree
Hide file tree
Showing 12 changed files with 179 additions and 31 deletions.
47 changes: 46 additions & 1 deletion doc/source/whatsnew/v0.24.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1235,7 +1235,6 @@ Datetimelike API Changes
- :class:`PeriodIndex` subtraction of another ``PeriodIndex`` will now return an object-dtype :class:`Index` of :class:`DateOffset` objects instead of raising a ``TypeError`` (:issue:`20049`)
- :func:`cut` and :func:`qcut` now returns a :class:`DatetimeIndex` or :class:`TimedeltaIndex` bins when the input is datetime or timedelta dtype respectively and ``retbins=True`` (:issue:`19891`)
- :meth:`DatetimeIndex.to_period` and :meth:`Timestamp.to_period` will issue a warning when timezone information will be lost (:issue:`21333`)
- :class:`DatetimeIndex` now accepts :class:`Int64Index` arguments as epoch timestamps (:issue:`20997`)
- :meth:`PeriodIndex.tz_convert` and :meth:`PeriodIndex.tz_localize` have been removed (:issue:`21781`)

.. _whatsnew_0240.api.other:
Expand Down Expand Up @@ -1353,6 +1352,52 @@ the object's ``freq`` attribute (:issue:`21939`, :issue:`23878`).
dti + pd.Index([1 * dti.freq, 2 * dti.freq])
.. _whatsnew_0240.deprecations.integer_tz:

Passing Integer data and a timezone to DatetimeIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The behavior of :class:`DatetimeIndex` when passed integer data and
a timezone is changing in a future version of pandas. Previously, these
were interpreted as wall times in the desired timezone. In the future,
these will be interpreted as wall times in UTC, which are then converted
to the desired timezone (:issue:`24559`).

The default behavior remains the same, but issues a warning:

.. code-block:: ipython
In [3]: pd.DatetimeIndex([946684800000000000], tz="US/Central")
/bin/ipython:1: FutureWarning:
Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
will be interpreted differently in a future version of pandas. Previously,
these were viewed as datetime64[ns] values representing the wall time
*in the specified timezone*. In the future, these will be viewed as
datetime64[ns] values representing the wall time *in UTC*. This is similar
to a nanosecond-precision UNIX epoch. To accept the future behavior, use
pd.to_datetime(integer_data, utc=True).tz_convert(tz)
To keep the previous behavior, use
pd.to_datetime(integer_data).tz_localize(tz)
#!/bin/python3
Out[3]: DatetimeIndex(['2000-01-01 00:00:00-06:00'], dtype='datetime64[ns, US/Central]', freq=None)
As the warning message explains, opt in to the future behavior by specifying that
the integer values are UTC, and then converting to the final timezone:

.. ipython:: python
pd.to_datetime([946684800000000000], utc=True).tz_convert('US/Central')
The old behavior can be retained with by localizing directly to the final timezone:

.. ipython:: python
pd.to_datetime([946684800000000000]).tz_localize('US/Central')
.. _whatsnew_0240.deprecations.tz_aware_array:

Converting Timezone-Aware Series and Index to NumPy Arrays
Expand Down
43 changes: 40 additions & 3 deletions pandas/core/arrays/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,21 @@
from pandas.tseries.offsets import Day, Tick

_midnight = time(0, 0)
# TODO(GH-24559): Remove warning, int_as_wall_time parameter.
_i8_message = """
Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
will be interpreted differently in a future version of pandas. Previously,
these were viewed as datetime64[ns] values representing the wall time
*in the specified timezone*. In the future, these will be viewed as
datetime64[ns] values representing the wall time *in UTC*. This is similar
to a nanosecond-precision UNIX epoch. To accept the future behavior, use
pd.to_datetime(integer_data, utc=True).tz_convert(tz)
To keep the previous behavior, use
pd.to_datetime(integer_data).tz_localize(tz)
"""


def tz_to_dtype(tz):
Expand Down Expand Up @@ -342,13 +357,15 @@ def _simple_new(cls, values, freq=None, dtype=_NS_DTYPE):
@classmethod
def _from_sequence(cls, data, dtype=None, copy=False,
tz=None, freq=None,
dayfirst=False, yearfirst=False, ambiguous='raise'):
dayfirst=False, yearfirst=False, ambiguous='raise',
int_as_wall_time=False):

freq, freq_infer = dtl.maybe_infer_freq(freq)

subarr, tz, inferred_freq = sequence_to_dt64ns(
data, dtype=dtype, copy=copy, tz=tz,
dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous)
dayfirst=dayfirst, yearfirst=yearfirst,
ambiguous=ambiguous, int_as_wall_time=int_as_wall_time)

freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq,
freq_infer)
Expand Down Expand Up @@ -1649,7 +1666,8 @@ def to_julian_date(self):

def sequence_to_dt64ns(data, dtype=None, copy=False,
tz=None,
dayfirst=False, yearfirst=False, ambiguous='raise'):
dayfirst=False, yearfirst=False, ambiguous='raise',
int_as_wall_time=False):
"""
Parameters
----------
Expand All @@ -1661,6 +1679,13 @@ def sequence_to_dt64ns(data, dtype=None, copy=False,
yearfirst : bool, default False
ambiguous : str, bool, or arraylike, default 'raise'
See pandas._libs.tslibs.conversion.tz_localize_to_utc
int_as_wall_time : bool, default False
Whether to treat ints as wall time in specified timezone, or as
nanosecond-precision UNIX epoch (wall time in UTC).
This is used in DatetimeIndex.__init__ to deprecate the wall-time
behaviour.
..versionadded:: 0.24.0
Returns
-------
Expand Down Expand Up @@ -1717,6 +1742,10 @@ def sequence_to_dt64ns(data, dtype=None, copy=False,
data, inferred_tz = objects_to_datetime64ns(
data, dayfirst=dayfirst, yearfirst=yearfirst)
tz = maybe_infer_tz(tz, inferred_tz)
# When a sequence of timestamp objects is passed, we always
# want to treat the (now i8-valued) data as UTC timestamps,
# not wall times.
int_as_wall_time = False

# `data` may have originally been a Categorical[datetime64[ns, tz]],
# so we need to handle these types.
Expand Down Expand Up @@ -1744,8 +1773,16 @@ def sequence_to_dt64ns(data, dtype=None, copy=False,
else:
# must be integer dtype otherwise
# assume this data are epoch timestamps
if tz:
tz = timezones.maybe_get_tz(tz)

if data.dtype != _INT64_DTYPE:
data = data.astype(np.int64, copy=False)
if int_as_wall_time and tz is not None and not timezones.is_utc(tz):
warnings.warn(_i8_message, FutureWarning, stacklevel=4)
data = conversion.tz_localize_to_utc(data.view('i8'), tz,
ambiguous=ambiguous)
data = data.view(_NS_DTYPE)
result = data.view(_NS_DTYPE)

if copy:
Expand Down
10 changes: 9 additions & 1 deletion pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,8 @@
is_dtype_union_equal, is_extension_array_dtype, is_float, is_float_dtype,
is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator,
is_list_like, is_object_dtype, is_period_dtype, is_scalar,
is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype)
is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype,
pandas_dtype)
import pandas.core.dtypes.concat as _concat
from pandas.core.dtypes.generic import (
ABCDataFrame, ABCDateOffset, ABCDatetimeArray, ABCIndexClass,
Expand Down Expand Up @@ -732,6 +733,13 @@ def astype(self, dtype, copy=True):
from .category import CategoricalIndex
return CategoricalIndex(self.values, name=self.name, dtype=dtype,
copy=copy)
elif is_datetime64tz_dtype(dtype):
# TODO(GH-24559): Remove this block, use the following elif.
# avoid FutureWarning from DatetimeIndex constructor.
from pandas import DatetimeIndex
tz = pandas_dtype(dtype).tz
return (DatetimeIndex(np.asarray(self))
.tz_localize("UTC").tz_convert(tz))

elif is_extension_array_dtype(dtype):
return Index(np.asarray(self), dtype=dtype, copy=copy)
Expand Down
3 changes: 2 additions & 1 deletion pandas/core/indexes/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,8 @@ def __new__(cls, data=None,

dtarr = DatetimeArray._from_sequence(
data, dtype=dtype, copy=copy, tz=tz, freq=freq,
dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous)
dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous,
int_as_wall_time=True)

subarr = cls._simple_new(dtarr, name=name,
freq=dtarr.freq, tz=dtarr.tz)
Expand Down
5 changes: 4 additions & 1 deletion pandas/core/reshape/tile.py
Original file line number Diff line number Diff line change
Expand Up @@ -449,7 +449,10 @@ def _convert_bin_to_datelike_type(bins, dtype):
bins : Array-like of bins, DatetimeIndex or TimedeltaIndex if dtype is
datelike
"""
if is_datetime64tz_dtype(dtype) or is_datetime_or_timedelta_dtype(dtype):
if is_datetime64tz_dtype(dtype):
bins = to_datetime(bins.astype(np.int64),
utc=True).tz_convert(dtype.tz)
elif is_datetime_or_timedelta_dtype(dtype):
bins = Index(bins.astype(np.int64), dtype=dtype)
return bins

Expand Down
14 changes: 7 additions & 7 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,8 +209,8 @@ def test_is_datetime64tz_dtype():
assert not com.is_datetime64tz_dtype(object)
assert not com.is_datetime64tz_dtype([1, 2, 3])
assert not com.is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3]))
assert com.is_datetime64tz_dtype(pd.DatetimeIndex(
[1, 2, 3], tz="US/Eastern"))
assert com.is_datetime64tz_dtype(pd.DatetimeIndex(['2000'],
tz="US/Eastern"))


def test_is_timedelta64_dtype():
Expand Down Expand Up @@ -286,7 +286,7 @@ def test_is_datetimelike():
assert com.is_datetimelike(pd.PeriodIndex([], freq="A"))
assert com.is_datetimelike(np.array([], dtype=np.datetime64))
assert com.is_datetimelike(pd.Series([], dtype="timedelta64[ns]"))
assert com.is_datetimelike(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
assert com.is_datetimelike(pd.DatetimeIndex(["2000"], tz="US/Eastern"))

dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
Expand Down Expand Up @@ -480,7 +480,7 @@ def test_needs_i8_conversion():
assert com.needs_i8_conversion(np.datetime64)
assert com.needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]"))
assert com.needs_i8_conversion(pd.DatetimeIndex(
[1, 2, 3], tz="US/Eastern"))
["2000"], tz="US/Eastern"))


def test_is_numeric_dtype():
Expand Down Expand Up @@ -541,7 +541,7 @@ def test_is_extension_type(check_scipy):
assert com.is_extension_type(pd.Series(cat))
assert com.is_extension_type(pd.SparseArray([1, 2, 3]))
assert com.is_extension_type(pd.SparseSeries([1, 2, 3]))
assert com.is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
assert com.is_extension_type(pd.DatetimeIndex(['2000'], tz="US/Eastern"))

dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
Expand Down Expand Up @@ -635,8 +635,8 @@ def test__get_dtype_fails(input_param):
(pd.DatetimeIndex([1, 2]), np.datetime64),
(pd.DatetimeIndex([1, 2]).dtype, np.datetime64),
('<M8[ns]', np.datetime64),
(pd.DatetimeIndex([1, 2], tz='Europe/London'), pd.Timestamp),
(pd.DatetimeIndex([1, 2], tz='Europe/London').dtype,
(pd.DatetimeIndex(['2000'], tz='Europe/London'), pd.Timestamp),
(pd.DatetimeIndex(['2000'], tz='Europe/London').dtype,
pd.Timestamp),
('datetime64[ns, Europe/London]', pd.Timestamp),
(pd.SparseSeries([1, 2], dtype='int32'), np.int32),
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/indexes/datetimes/test_astype.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,10 +238,10 @@ def _check_rng(rng):
['US/Pacific', 'datetime64[ns, US/Pacific]'],
[None, 'datetime64[ns]']])
def test_integer_index_astype_datetime(self, tz, dtype):
# GH 20997, 20964
# GH 20997, 20964, 24559
val = [pd.Timestamp('2018-01-01', tz=tz).value]
result = pd.Index(val).astype(dtype)
expected = pd.DatetimeIndex(['2018-01-01'], tz=tz)
expected = pd.DatetimeIndex(["2018-01-01"], tz=tz)
tm.assert_index_equal(result, expected)


Expand Down
37 changes: 33 additions & 4 deletions pandas/tests/indexes/datetimes/test_construction.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,8 +118,15 @@ def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture):
tz = tz_aware_fixture
i = pd.date_range('20130101', periods=5, freq='H', tz=tz)
kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()}
result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs)
expected = i.tz_localize(None).tz_localize('UTC').tz_convert(tz)

if str(tz) in ('UTC', 'tzutc()'):
warn = None
else:
warn = FutureWarning

with tm.assert_produces_warning(warn, check_stacklevel=False):
result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs)
expected = DatetimeIndex(i, **kwargs)
tm.assert_index_equal(result, expected)

# localize into the provided tz
Expand Down Expand Up @@ -377,6 +384,19 @@ def test_range_kwargs_deprecated(self):
with tm.assert_produces_warning(FutureWarning):
DatetimeIndex(start='1/1/2000', end='1/10/2000', freq='D')

def test_integer_values_and_tz_deprecated(self):
# GH-24559
values = np.array([946684800000000000])
with tm.assert_produces_warning(FutureWarning):
result = DatetimeIndex(values, tz='US/Central')
expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central")
tm.assert_index_equal(result, expected)

# but UTC is *not* deprecated.
with tm.assert_produces_warning(None):
result = DatetimeIndex(values, tz='UTC')
expected = pd.DatetimeIndex(['2000-01-01T00:00:00'], tz="US/Central")

def test_constructor_coverage(self):
rng = date_range('1/1/2000', periods=10.5)
exp = date_range('1/1/2000', periods=10)
Expand Down Expand Up @@ -555,21 +575,30 @@ def test_constructor_timestamp_near_dst(self):
ts[1].to_pydatetime()])
tm.assert_index_equal(result, expected)

# TODO(GH-24559): Remove the xfail for the tz-aware case.
@pytest.mark.parametrize('klass', [Index, DatetimeIndex])
@pytest.mark.parametrize('box', [
np.array, partial(np.array, dtype=object), list])
@pytest.mark.parametrize('tz, dtype', [
['US/Pacific', 'datetime64[ns, US/Pacific]'],
[None, 'datetime64[ns]']])
pytest.param('US/Pacific', 'datetime64[ns, US/Pacific]',
marks=[pytest.mark.xfail(),
pytest.mark.filterwarnings(
"ignore:\\n Passing:FutureWarning")]),
[None, 'datetime64[ns]'],
])
def test_constructor_with_int_tz(self, klass, box, tz, dtype):
# GH 20997, 20964
ts = Timestamp('2018-01-01', tz=tz)
result = klass(box([ts.value]), dtype=dtype)
expected = klass([ts])
assert result == expected

# This is the desired future behavior
@pytest.mark.xfail(reason="Future behavior", strict=False)
@pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning")
def test_construction_int_rountrip(self, tz_naive_fixture):
# GH 12619
# TODO(GH-24559): Remove xfail
tz = tz_naive_fixture
result = 1293858000000000000
expected = DatetimeIndex([1293858000000000000], tz=tz).asi8[0]
Expand Down
4 changes: 3 additions & 1 deletion pandas/tests/indexes/multi/test_integrity.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,9 @@ def test_values_multiindex_datetimeindex():
# Test to ensure we hit the boxing / nobox part of MI.values
ints = np.arange(10 ** 18, 10 ** 18 + 5)
naive = pd.DatetimeIndex(ints)
aware = pd.DatetimeIndex(ints, tz='US/Central')
# TODO(GH-24559): Remove the FutureWarning
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
aware = pd.DatetimeIndex(ints, tz='US/Central')

idx = pd.MultiIndex.from_arrays([naive, aware])
result = idx.values
Expand Down
33 changes: 25 additions & 8 deletions pandas/tests/indexes/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from datetime import datetime, timedelta
from decimal import Decimal
import math
import sys

import numpy as np
import pytest
Expand Down Expand Up @@ -401,24 +402,40 @@ def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, utc,
# Test constructing with a datetimetz dtype
# .values produces numpy datetimes, so these are considered naive
# .asi8 produces integers, so these are considered epoch timestamps
# ^the above will be true in a later version. Right now we `.view`
# the i8 values as NS_DTYPE, effectively treating them as wall times.
index = pd.date_range('2011-01-01', periods=5)
arg = getattr(index, attr)
if utc:
index = index.tz_localize('UTC').tz_convert(tz_naive_fixture)
else:
index = index.tz_localize(tz_naive_fixture)
index = index.tz_localize(tz_naive_fixture)
dtype = index.dtype

result = klass(arg, tz=tz_naive_fixture)
# TODO(GH-24559): Remove the sys.modules and warnings
# not sure what this is from. It's Py2 only.
modules = [sys.modules['pandas.core.indexes.base']]

if (tz_naive_fixture and attr == "asi8" and
str(tz_naive_fixture) not in ('UTC', 'tzutc()')):
ex_warn = FutureWarning
else:
ex_warn = None

# stacklevel is checked elsewhere. We don't do it here since
# Index will have an frame, throwing off the expected.
with tm.assert_produces_warning(ex_warn, check_stacklevel=False,
clear=modules):
result = klass(arg, tz=tz_naive_fixture)
tm.assert_index_equal(result, index)

result = klass(arg, dtype=dtype)
with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
result = klass(arg, dtype=dtype)
tm.assert_index_equal(result, index)

result = klass(list(arg), tz=tz_naive_fixture)
with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
result = klass(list(arg), tz=tz_naive_fixture)
tm.assert_index_equal(result, index)

result = klass(list(arg), dtype=dtype)
with tm.assert_produces_warning(ex_warn, check_stacklevel=False):
result = klass(list(arg), dtype=dtype)
tm.assert_index_equal(result, index)

@pytest.mark.parametrize("attr", ['values', 'asi8'])
Expand Down
Loading

0 comments on commit 43fe741

Please sign in to comment.