This is the code for the paper:
Multimodal Review Generation for Recommender Systems
Quoc-Tuan Truong and Hady W. Lauw
Presented at WWW 2019
We provide:
- Code to train and evaluate the model
- Sample data to run an experiment with MRG
If you find the code and data useful in your research, please cite:
@inproceedings{truong2019mrg,
title={Multimodal Review Generation for Recommender Systems},
author={Truong, Quoc-Tuan and Lauw, Hady W},
booktitle={The World Wide Web Conference, {WWW} 2019}
year={2019},
}
- Python 3
- Tensorflow >=1.12,<2.0
- Hickle
- Tqdm
- GloVe word embeddings
python train.py --data_dir ./data --batch_size 64 --learning_rate 0.001 --num_epochs 20
Training arguments:
python train.py --help
optional arguments:
-h, --help show this help message and exit
--data_dir DATA_DIR
Path to the data directory
--learning_rate LEARNING_RATE
Learning rate (default: 3e-4)
--dropout_rate DROPOUT_RATE
Probability of dropping neurons (default: 0.2)
--lambda_reg LAMBDA_REG
Lambda hyper-parameter for regularization (default: 1e-4)
--num_epochs NUM_EPOCHS
Number of training epochs (default: 20)
--batch_size BATCH_SIZE
Batch size of reviews (default: 64)
--num_factors NUM_FACTORS
Number of latent factors for users/items (default: 256)
--word_dim WORD_DIM
Word embedding dimensions (default: 200)
--lstm_dim LSTM_DIM
Hidden dimensions of the LSTM Cell (default: 256)
--max_length MAX_LENGTH
Maximum length of reviews to be generated (default: 20)
--display_step DISPLAY_STEP
Display info after number of steps (default: 10)
--allow_soft_placement ALLOW_SOFT_PLACEMENT
Allow device soft device placement
Questions and discussion are welcome: www.qttruong.com