-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5f36fa3
commit c3b0a3c
Showing
5 changed files
with
114 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
--- | ||
title: Introduction to Apache Beam | ||
disquis: PythonBiellaGroup | ||
tags: | ||
- apache beam | ||
--- | ||
## Intro | ||
|
||
Let's discover **[Apache Beam](https://beam.apache.org/)** together with [Stefano Bosisio](https://www.linkedin.com/in/stefano-bosisio1/) to create data pipelines and orchestrate Data Engineering tasks. | ||
|
||
Agenda for the meetup: | ||
|
||
* General introduction to Apache Beam | ||
* Creating a pipeline with Beam and running it locally | ||
* Introduction to Dataflow | ||
* Practical example of a pipeline with windowing to run on Dataflow | ||
* Flex templates on Dataflow | ||
* A practical example of scraping with Apache Beam | ||
|
||
## Material | ||
|
||
[![Github](https://img.shields.io/badge/GitHub-181717.svg?style=for-the-badge&logo=GitHub&logoColor=white)](https://github.com/Steboss/dataflow_teaching) | ||
|
||
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://towardsdatascience.com/apache-beam-data-processing-data-pipelines-dataflow-and-flex-templates-2902224aabf3) | ||
|
||
|
||
## Meetup video | ||
<iframe width="560" height="315" src="https://www.youtube.com/embed/HIRvIZ_gYGc?si=dKRYLGn5ZE2OHi1o" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
--- | ||
title: Introduzione ad Apache Beam | ||
disquis: PythonBiellaGroup | ||
tags: | ||
- apache beam | ||
--- | ||
## Intro | ||
|
||
Scopriamo assieme a [Stefano Bosisio](https://www.linkedin.com/in/stefano-bosisio1/) **[Apache Beam](https://beam.apache.org/)** per creare data pipelines e orchestrare i propri task di Data Engineering. | ||
|
||
Programma della serata: | ||
|
||
* Introduzione generale ad apache beam | ||
* Creare una pipeline con beam ed eseguirla localmente | ||
* Introduzione a dataflow | ||
* Esempio pratico di pipeline con windowing da eseguire su dataflow | ||
* I flex templates su dataflow | ||
* Un esempio pratico di scraping con apache beam | ||
|
||
## Materiale | ||
|
||
[![Github](https://img.shields.io/badge/GitHub-181717.svg?style=for-the-badge&logo=GitHub&logoColor=white)](https://github.com/Steboss/dataflow_teaching) | ||
|
||
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://towardsdatascience.com/apache-beam-data-processing-data-pipelines-dataflow-and-flex-templates-2902224aabf3) | ||
|
||
## Video del meetup | ||
<iframe width="560" height="315" src="https://www.youtube.com/embed/HIRvIZ_gYGc?si=dKRYLGn5ZE2OHi1o" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
--- | ||
title: Data privacy with Nerpii | ||
disquis: PythonBiellaGroup | ||
tags: | ||
tags: | ||
- data privacy | ||
- nerpii | ||
--- | ||
## Intro | ||
|
||
How can data privacy be preserved in a world full of algorithms and information? | ||
|
||
Together with [Simona Mazzarino](https://www.linkedin.com/in/simona-mazzarino-3ba7b7225/) ([Clearbox.ai](https://www.clearbox.ai/)), we will explore **[Nerpii](https://pypi.org/project/nerpii/)**, an open-source library that uses Named Entity Recognition to protect structured data by generating synthetic personal information. | ||
|
||
Agenda: | ||
|
||
* Introduction to privacy in Machine Learning | ||
* Challenges, risks, and complexities of privacy in the world of Artificial Intelligence | ||
* Overview of the Nerpii library | ||
* Advanced practices to ensure privacy in Machine Learning | ||
* Implications of technology in the world of Generative Artificial Intelligence | ||
|
||
## Material | ||
|
||
[![Github](https://img.shields.io/badge/GitHub-181717.svg?style=for-the-badge&logo=GitHub&logoColor=white)](https://github.com/Clearbox-AI/nerpii) | ||
|
||
## Meetup video | ||
<iframe width="560" height="315" src="https://www.youtube.com/embed/aX5sljMXBkM?si=iNi-CpfVlFg531-c" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
--- | ||
title: Data privacy con Nerpii | ||
disquis: PythonBiellaGroup | ||
tags: | ||
- data privacy | ||
- nerpii | ||
--- | ||
## Intro | ||
|
||
Come si può preservare la privacy dei dati in un mondo pieno di algoritmi e di informazione? | ||
|
||
Insieme a [Simona Mazzarino](https://www.linkedin.com/in/simona-mazzarino-3ba7b7225/)([Clearbox.ai](https://www.clearbox.ai/)) andremo alla scoperta di **[Nerpii](https://pypi.org/project/nerpii/)** una libreria open source che utilizza la Named Entity Recognition per proteggere dati strutturati attraverso la generazione di informazioni personali sintetiche. | ||
|
||
Programma della serata: | ||
|
||
* Introduzione alla privacy nel Machine Learning | ||
* Sfide, rischi e complessità della privacy nel mondo dell'Intelligenza Artificiale | ||
* Overview della libreria: Nerpii | ||
* Pratiche avanzate per garantire la privacy nel Machine Learning | ||
* Implicazioni della tecnologia nel mondo dell'Intelligenza Artificiale Generativa | ||
|
||
## Materiale | ||
|
||
[![Github](https://img.shields.io/badge/GitHub-181717.svg?style=for-the-badge&logo=GitHub&logoColor=white)](https://github.com/Clearbox-AI/nerpii) | ||
|
||
## Video del meetup | ||
<iframe width="560" height="315" src="https://www.youtube.com/embed/aX5sljMXBkM?si=iNi-CpfVlFg531-c" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters