Skip to content

QVPR/predict2improve

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Predicting to Improve: Integrity Measures for Assessing Visual Localization Performance

This repo contains source code for our paper: "Predicting to Improve: Integrity Measures for Assessing Visual Localization Performance", available from the publisher and on QUT ePrints.

Attribution

When using code within this repository, please reference the following paper:

@ARTICLE{9830823,
  author={Carson, Helen and Ford, Jason J. and Milford, Michael},
  journal={IEEE Robotics and Automation Letters}, 
  title={Predicting to Improve: Integrity Measures for Assessing Visual Localization Performance}, 
  year={2022},
  volume={7},
  number={4},
  pages={9627-9634},
  doi={10.1109/LRA.2022.3191205}}

Installation

We recommend using conda or mamba to install all dependencies. Mamba can be installed from mambaforge.

conda create --name vpred_env python=3.9 numpy matplotlib jupyterlab scikit-learn -c conda-forge
conda activate vpred_env

Download the example Nordland feature set using the link here.

Note these features are derived from the partitioned Nordland testset published at http://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset by David Olid et al in Single-View Place Recognition under Seasonal Changes In PPNIV Workshop at IROS 2018.

Run the jupyterlab example notebook using:

jupyter lab example.ipynb

Licence

The code is licensed under the MIT License.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published