This repo contains source code for our paper: "Predicting to Improve: Integrity Measures for Assessing Visual Localization Performance", available from the publisher and on QUT ePrints.
When using code within this repository, please reference the following paper:
@ARTICLE{9830823,
author={Carson, Helen and Ford, Jason J. and Milford, Michael},
journal={IEEE Robotics and Automation Letters},
title={Predicting to Improve: Integrity Measures for Assessing Visual Localization Performance},
year={2022},
volume={7},
number={4},
pages={9627-9634},
doi={10.1109/LRA.2022.3191205}}
We recommend using conda or mamba to install all dependencies. Mamba can be installed from mambaforge
.
conda create --name vpred_env python=3.9 numpy matplotlib jupyterlab scikit-learn -c conda-forge
conda activate vpred_env
Download the example Nordland feature set using the link here.
Note these features are derived from the partitioned Nordland testset published at http://webdiis.unizar.es/~jmfacil/pr-nordland/#download-dataset by David Olid et al in Single-View Place Recognition under Seasonal Changes In PPNIV Workshop at IROS 2018.
Run the jupyterlab example notebook using:
jupyter lab example.ipynb
The code is licensed under the MIT License.