Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gaussian energies #1815

Merged
merged 4 commits into from
Nov 13, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
453 changes: 453 additions & 0 deletions arkane/data/B2PLYP.LOG

Large diffs are not rendered by default.

364 changes: 364 additions & 0 deletions arkane/data/UCCSDT_C_ATOM.LOG
Original file line number Diff line number Diff line change
@@ -0,0 +1,364 @@
Entering Link 1 = C:\G09W\l1.exe PID= 1288.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.

This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.

This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.

The following legend is applicable only to US Government
contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.

Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492


---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------


Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

******************************************
Gaussian 09: IA32W-G09RevD.01 24-Apr-2013
07-Nov-2019
******************************************
%chk=C:\Users\drana\Desktop\work\Scratch\G09\MarkG\Energy\G09\uccsdt_C_atom.chk
----------------------------------
# uccsd(t)/3-21g geom=connectivity
----------------------------------
1/38=1,57=2/1;
2/12=2,17=6,18=5,40=1/2;
3/5=5,11=2,16=1,25=1,30=1,116=2/1,2,3;
4//1;
5/5=2,38=5/2;
8/6=4,9=120000,10=1/1,4;
9/5=7,14=2/13;
6/7=2,8=2,9=2,10=2/1;
99/5=1,9=1/99;
-------------------
Title Card Required
-------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 3
C 1.0251 0.95711 0.

Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 1.025105 0.957113 0.000000
---------------------------------------------------------------------
Stoichiometry C(3)
Framework group OH[O(C)]
Deg. of freedom 0
Full point group OH NOp 48
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 0.000000 0.000000 0.000000
---------------------------------------------------------------------
Standard basis: 3-21G (6D, 7F)
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 0 symmetry adapted cartesian basis functions of B2G symmetry.
There are 0 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 2 symmetry adapted cartesian basis functions of B1U symmetry.
There are 2 symmetry adapted cartesian basis functions of B2U symmetry.
There are 2 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 0 symmetry adapted basis functions of B2G symmetry.
There are 0 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 2 symmetry adapted basis functions of B1U symmetry.
There are 2 symmetry adapted basis functions of B2U symmetry.
There are 2 symmetry adapted basis functions of B3U symmetry.
9 basis functions, 15 primitive gaussians, 9 cartesian basis functions
4 alpha electrons 2 beta electrons
nuclear repulsion energy 0.0000000000 Hartrees.
NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 262144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 9 RedAO= T EigKep= 6.75D-01 NBF= 3 0 0 0 0 2 2 2
NBsUse= 9 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 0 0 0 2 2 2
ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Initial guess orbital symmetries:
Alpha Orbitals:
Occupied (A1G) (A1G) (T1U) (T1U)
Virtual (T1U) (T1U) (T1U) (T1U) (A1G)
Beta Orbitals:
Occupied (A1G) (A1G)
Virtual (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G)
Initial guess <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 1.0000 <S**2>= 2.0000 S= 1.0000
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=822740.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Density matrix breaks symmetry, PCut= 1.00D-04
Density has only Abelian symmetry.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
Density matrix breaks symmetry, PCut= 1.00D-07
Density has only Abelian symmetry.
SCF Done: E(UHF) = -37.4810698326 A.U. after 6 cycles
NFock= 6 Conv=0.55D-08 -V/T= 2.0033
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 1.0000 <S**2>= 2.0010 S= 1.0003
<L.S>= 0.000000000000E+00
Annihilation of the first spin contaminant:
S**2 before annihilation 2.0010, after 2.0000
ExpMin= 1.96D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Range of M.O.s used for correlation: 2 9
NBasis= 9 NAE= 4 NBE= 2 NFC= 1 NFV= 0
NROrb= 8 NOA= 3 NOB= 1 NVA= 5 NVB= 7
Semi-Direct transformation.
ModeAB= 2 MOrb= 3 LenV= 33458373
LASXX= 66 LTotXX= 66 LenRXX= 66
LTotAB= 132 MaxLAS= 1080 LenRXY= 1080
NonZer= 1368 LenScr= 1048064 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 1049210
MaxDsk= -1 SrtSym= F ITran= 4
JobTyp=1 Pass 1: I= 1 to 3.
(rs|ai) integrals will be sorted in core.
ModeAB= 2 MOrb= 1 LenV= 33458373
LASXX= 28 LTotXX= 28 LenRXX= 360
LTotAB= 20 MaxLAS= 360 LenRXY= 20
NonZer= 456 LenScr= 1048064 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 1048444
MaxDsk= -1 SrtSym= F ITran= 4
JobTyp=2 Pass 1: I= 1 to 1.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.1539858699D-02 E2= -0.4542240933D-02
alpha-beta T2 = 0.8342095977D-02 E2= -0.1907164950D-01
beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00
ANorm= 0.1004928831D+01
E2 = -0.2361389043D-01 EUMP2 = -0.37504683723025D+02
(S**2,0)= 0.20010D+01 (S**2,1)= 0.20001D+01
E(PUHF)= -0.37481383594D+02 E(PMP2)= -0.37504849457D+02
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=802872.
Iterations= 50 Convergence= 0.100D-06
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
E(PMP3)= -0.37512313510D+02
MP4(R+Q)= 0.19195405D-03
E3= -0.75521070D-02 EUMP3= -0.37512235830D+02
E4(DQ)= -0.27959200D-02 UMP4(DQ)= -0.37515031750D+02
E4(SDQ)= -0.28114103D-02 UMP4(SDQ)= -0.37515047240D+02
DE(Corr)= -0.30974220E-01 E(Corr)= -37.512044053
NORM(A)= 0.10116679D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.34987698E-01 E(CORR)= -37.516057530 Delta=-4.01D-03
NORM(A)= 0.10140179D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.36028974E-01 E(CORR)= -37.517098807 Delta=-1.04D-03
NORM(A)= 0.10142146D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.36098709E-01 E(CORR)= -37.517168542 Delta=-6.97D-05
NORM(A)= 0.10141609D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.36075425E-01 E(CORR)= -37.517145257 Delta= 2.33D-05
NORM(A)= 0.10141784D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.36082625E-01 E(CORR)= -37.517152457 Delta=-7.20D-06
NORM(A)= 0.10141757D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.36081518E-01 E(CORR)= -37.517151351 Delta= 1.11D-06
NORM(A)= 0.10141759D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 10
NAB= 3 NAA= 3 NBB= 0.
DE(Corr)= -0.36081594E-01 E(CORR)= -37.517151426 Delta=-7.52D-08
NORM(A)= 0.10141759D+01
Dominant configurations:
***********************
Spin Case I J A B Value
ABAB 2 2 5 3 -0.136608D+00
Largest amplitude= 1.37D-01
Time for triples= 0.00 seconds.
T4(CCSD)= -0.30136292D-03
T5(CCSD)= -0.16795075D-05
CCSD(T)= -0.37517454469D+02

S**2, projected HF & approx projected MPn energies after annihilation of
unwanted spin states (see manual for definitions):

spins (S**2,0) (S**2,1) PUHF PMP2 PMP3 PMP4
annihilated
s+1 2.00000 2.00000 -37.481384 -37.504849 -37.512314

Discarding MO integrals.

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:
Alpha Orbitals:
Occupied (A1G) (A1G) (?A) (?A)
Virtual (?A) (?A) (?A) (?A) (A1G)
Beta Orbitals:
Occupied (A1G) (A1G)
Virtual (?A) (?A) (?A) (?A) (?A) (?A) (A1G)
Unable to determine electronic state: an orbital has unidentified symmetry.
Alpha occ. eigenvalues -- -11.27250 -0.81446 -0.42596 -0.42596
Alpha virt. eigenvalues -- 0.05294 0.89798 0.89798 0.97612 1.24659
Beta occ. eigenvalues -- -11.23139 -0.57527
Beta virt. eigenvalues -- 0.10809 0.16273 0.16273 1.01164 1.06359
Beta virt. eigenvalues -- 1.06359 1.33242
Condensed to atoms (all electrons):
1
1 C 6.000000
Atomic-Atomic Spin Densities.
1
1 C 2.000000
Mulliken charges and spin densities:
1 2
1 C 0.000000 2.000000
Sum of Mulliken charges = 0.00000 2.00000
Mulliken charges and spin densities with hydrogens summed into heavy atoms:
1 2
1 C 0.000000 2.000000
Electronic spatial extent (au): <R**2>= 13.3032
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -4.7201 YY= -6.5866 ZZ= -6.5866
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 1.2443 YY= -0.6222 ZZ= -0.6222
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000
XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.0000 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -4.1347 YYYY= -7.1820 ZZZZ= -7.1820 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -1.8861 XXZZ= -1.8861 YYZZ= -2.3940
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 0.000000000000D+00 E-N=-8.757280191249D+01 KE= 3.735620893854D+01
Symmetry AG KE= 3.487097636732D+01
Symmetry B1G KE= 0.000000000000D+00
Symmetry B2G KE= 0.000000000000D+00
Symmetry B3G KE= 0.000000000000D+00
Symmetry AU KE= 0.000000000000D+00
Symmetry B1U KE= 1.242616285610D+00
Symmetry B2U KE= 1.242616285610D+00
Symmetry B3U KE= 4.658757089566D-33
1|1|UNPC-DUMINDA-T480S|SP|UCCSD(T)-FC|3-21G|C1(3)|DRANA|07-Nov-2019|0|
|# uccsd(t)/3-21g geom=connectivity||Title Card Required||0,3|C,0,1.02
510459,0.95711297,0.||Version=IA32W-G09RevD.01|HF=-37.4810698|MP2=-37.
5046837|MP3=-37.5122358|MP4D=-37.5152237|MP4DQ=-37.5150318|PUHF=-37.48
13836|PMP2-0=-37.5048495|PMP3-0=-37.5123135|MP4SDQ=-37.5150472|CCSD=-3
7.5171514|CCSD(T)=-37.5174545|S2=2.000971|S2-1=2.000055|S2A=2.|RMSD=5.
455e-009|PG=OH [O(C1)]||@


TIME IS NATURE'S WAY OF MAKING SURE EVERYTHING
DOESN'T HAPPEN AT ONCE.
- WOODY ALLEN
Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds.
File lengths (MBytes): RWF= 14 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Thu Nov 07 11:18:37 2019.
Loading