Skip to content

Rebooorn/mosDAtoolkit

Repository files navigation


Multi Organ Segmentation Data Augmentation Toolkit

Description

This toolkit is part of my PhD research about data augmentation (DA) strategies on multi-organ segmentaiton(MOS) (mainly CT). These strategies have been re-implemented for MOS:

  • CutMix
  • ObjectAug
  • CarveMix
  • AnatoMix

Dependency

Some utils are from my another repo mostoolkit.
In cases when inpaint utils are used, then you need to install pytorch.

Some notes

Use data_preparation.ipynb to preprocess the data for DA strategies and data split configs(maybe needed for DA). prepare_nnunet_dataset.py might be useful to run nnUNet. metrics.py is used to generate the evaluation metrics (micro/macro avaraged dice score)

Examples

  1. CutMix
python cli_cutmix.py -sp split.json -d ./amos128 -s ./amoscutmix -n 200
  1. ObjectAug
python cli_objectaug.py -sp split.json -d ./amos128 -s ./amosobjectaug -n 200 -nc 16 -nw 8
  1. CarveMix
python cli_carvemix.py -sp split.json -d ./amos128 -s ./amoscarvemix -n 200 -nc 16 -nw 8
  1. AnatoMix
python cli_anatomix_v2.py -sp split.json -d ./amos128 -s ./amosanatomix -n 200 -nc 16 -nw 8

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published