System | Ubuntu 22.04.5 LTS |
---|---|
CPU | Intel(R) Xeon(R) Silver 4114 |
RAM | 128GB |
GPU (number and type) | One NVIDIA 4080 16G |
CUDA version | 12.1 |
Programming language | Python 3.10 |
Deep learning framework | torch 2.2.2, torchvision 0.17.2 |
Accuracy metrics are evaluated on the public validation set of CVPR 2024 Segment Anything In Medical Images On Laptop Challenge. The computational metrics are obtained on an Intel(R) Core(TM) i9-10900K.
Method | Res. | Params | FLOPs | DSC | NSD | DSC-R | NSD-R | 2D Runtime | 3D Runtime | 2D Memory Usage | 3D Memory Usage |
---|---|---|---|---|---|---|---|---|---|---|---|
MedSAM | 1024 | 93.74M | 488.24G | 84.91 | 86.46 | 84.91 | 86.46 | N/A | N/A | N/A | N/A |
LiteMedSAM | 256 | 9.79M | 39.98G | 83.23 | 82.71 | 83.23 | 82.71 | 5.1s | 42.6s | 1135MB | 1241MB |
MedficientSAM-L0 | 512 | 34.79M | 36.80G | 85.85 | 87.05 | 84.93 | 86.76 | 0.9s | 7.4s | 448MB | 687MB |
MedficientSAM-L1 | 512 | 47.65M | 51.05G | 86.42 | 87.95 | 85.16 | 86.68 | 1.0s | 9.0s | 553MB | 793MB |
MedficientSAM-L2 | 512 | 61.33M | 70.71G | 86.08 | 87.53 | 85.07 | 86.63 | 1.1s | 11.1s | 663MB | 903MB |
Target | LiteMedSAM DSC(%) | LiteMedSAM NSD(%) | Distillation DSC(%) | Distillation NSD(%) | Distillation-R DSC(%) | Distillation-R NSD(%) | No Augmentation DSC(%) | No Augmentation NSD(%) | No Augmentation-R DSC(%) | No Augmentation-R NSD(%) | MedficientSAM-L1 DSC(%) | MedficientSAM-L1 NSD(%) | MedficientSAM-L1-R DSC(%) | MedficientSAM-L1-R NSD(%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CT | 92.26 | 94.90b | 91.13 | 93.75 | 92.15 | 94.74 | 92.24 | 94.71 | 92.69 | 95.50b | 92.15 | 94.80 | 93.19r | 95.78r |
MR | 89.63r | 93.37r | 85.73 | 89.75 | 87.87b | 91.40 | 87.25 | 90.88 | 88.54 | 92.21b | 86.98 | 90.77 | 89.51 | 92.99 |
PET | 51.58 | 25.17 | 70.49b | 54.52b | 68.30 | 50.17 | 72.05r | 56.26r | 61.06 | 49.13 | 73.00r | 58.03r | 66.97 | 52.52 |
US | 94.77r | 96.81r | 84.43 | 89.29 | 84.52b | 89.37 | 81.99 | 86.74 | 82.41 | 87.16b | 82.50 | 87.24 | 81.39 | 86.09 |
X-Ray | 75.83 | 80.39 | 78.92 | 84.64 | 75.40 | 80.38 | 79.88 | 85.73r | 78.04 | 83.10 | 80.47b | 86.23r | 75.78 | 80.88 |
Dermoscopy | 92.47 | 93.85 | 92.84 | 94.16 | 92.54 | 93.88 | 94.24r | 95.62r | 93.71b | 95.19b | 94.16 | 95.54 | 93.17 | 94.62 |
Endoscopy | 96.04b | 98.11 | 96.88r | 98.81r | 95.92 | 98.16 | 96.05 | 98.33 | 95.58 | 98.07b | 96.10 | 98.37 | 94.62 | 97.26 |
Fundus | 94.81 | 96.41 | 94.10 | 95.83 | 93.85 | 95.54 | 94.16 | 95.89 | 94.27r | 96.00r | 94.32 | 96.05 | 94.16 | 95.90 |
Microscopy | 61.63 | 65.38 | 75.63 | 82.15 | 75.90b | 82.45b | 78.76r | 85.22r | 78.09 | 84.48 | 78.09 | 84.47 | 77.67 | 84.11 |
Average | 83.23 | 82.71 | 85.57 | 86.99 | 85.16 | 86.23 | 86.29r | 87.71 | 84.93 | 86.76 | 86.42 | 87.95r | 85.16 | 86.68 |
b - Suboptimal results marked in blue
The Docker images can be found here.
docker load -i icimhdu_reproduce1st.tar.gz
docker container run -m 8G --name seno --rm -v $PWD/test_input/:/workspace/inputs/ -v $PWD/test_output/:/workspace/outputs/ icimhdu_reproduce1st:latest /bin/bash -c "sh predict.sh"
To measure the running time (including Docker starting time), see https://github.com/bowang-lab/MedSAM/blob/LiteMedSAM/CVPR24_time_eval.py