Skip to content

RicoLeehdu/medficientsam-reproduce

Repository files navigation

MedficientSAM Reproduced

screen

screen

Environment and Requirements

System Ubuntu 22.04.5 LTS
CPU Intel(R) Xeon(R) Silver 4114
RAM 128GB
GPU (number and type) One NVIDIA 4080 16G
CUDA version 12.1
Programming language Python 3.10
Deep learning framework torch 2.2.2, torchvision 0.17.2

Reproduced Results

Accuracy metrics are evaluated on the public validation set of CVPR 2024 Segment Anything In Medical Images On Laptop Challenge. The computational metrics are obtained on an Intel(R) Core(TM) i9-10900K.

Method Res. Params FLOPs DSC NSD DSC-R NSD-R 2D Runtime 3D Runtime 2D Memory Usage 3D Memory Usage
MedSAM 1024 93.74M 488.24G 84.91 86.46 84.91 86.46 N/A N/A N/A N/A
LiteMedSAM 256 9.79M 39.98G 83.23 82.71 83.23 82.71 5.1s 42.6s 1135MB 1241MB
MedficientSAM-L0 512 34.79M 36.80G 85.85 87.05 84.93 86.76 0.9s 7.4s 448MB 687MB
MedficientSAM-L1 512 47.65M 51.05G 86.42 87.95 85.16 86.68 1.0s 9.0s 553MB 793MB
MedficientSAM-L2 512 61.33M 70.71G 86.08 87.53 85.07 86.63 1.1s 11.1s 663MB 903MB
Target LiteMedSAM DSC(%) LiteMedSAM NSD(%) Distillation DSC(%) Distillation NSD(%) Distillation-R DSC(%) Distillation-R NSD(%) No Augmentation DSC(%) No Augmentation NSD(%) No Augmentation-R DSC(%) No Augmentation-R NSD(%) MedficientSAM-L1 DSC(%) MedficientSAM-L1 NSD(%) MedficientSAM-L1-R DSC(%) MedficientSAM-L1-R NSD(%)
CT 92.26 94.90b 91.13 93.75 92.15 94.74 92.24 94.71 92.69 95.50b 92.15 94.80 93.19r 95.78r
MR 89.63r 93.37r 85.73 89.75 87.87b 91.40 87.25 90.88 88.54 92.21b 86.98 90.77 89.51 92.99
PET 51.58 25.17 70.49b 54.52b 68.30 50.17 72.05r 56.26r 61.06 49.13 73.00r 58.03r 66.97 52.52
US 94.77r 96.81r 84.43 89.29 84.52b 89.37 81.99 86.74 82.41 87.16b 82.50 87.24 81.39 86.09
X-Ray 75.83 80.39 78.92 84.64 75.40 80.38 79.88 85.73r 78.04 83.10 80.47b 86.23r 75.78 80.88
Dermoscopy 92.47 93.85 92.84 94.16 92.54 93.88 94.24r 95.62r 93.71b 95.19b 94.16 95.54 93.17 94.62
Endoscopy 96.04b 98.11 96.88r 98.81r 95.92 98.16 96.05 98.33 95.58 98.07b 96.10 98.37 94.62 97.26
Fundus 94.81 96.41 94.10 95.83 93.85 95.54 94.16 95.89 94.27r 96.00r 94.32 96.05 94.16 95.90
Microscopy 61.63 65.38 75.63 82.15 75.90b 82.45b 78.76r 85.22r 78.09 84.48 78.09 84.47 77.67 84.11
Average 83.23 82.71 85.57 86.99 85.16 86.23 86.29r 87.71 84.93 86.76 86.42 87.95r 85.16 86.68

b - Suboptimal results marked in blue

Reproducibility

The Docker images can be found here.

docker load -i icimhdu_reproduce1st.tar.gz
docker container run -m 8G --name seno --rm -v $PWD/test_input/:/workspace/inputs/ -v $PWD/test_output/:/workspace/outputs/ icimhdu_reproduce1st:latest /bin/bash -c "sh predict.sh"

To measure the running time (including Docker starting time), see https://github.com/bowang-lab/MedSAM/blob/LiteMedSAM/CVPR24_time_eval.py

Train Process

Log Files

Distilled-L0

screen

Distilled-L1

screen

Distilled-L2

screen

Fintuned-L0

screen

Fintuned-L1

screen

Fintuned-L2

screen

References

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published