This is an implementation of zero-shot instance segmentation using Segment Anything. Thanks to the authors of Segment Anything for their wonderful work!
This repository is based on MMDetection and includes some code from H-Deformable-DETR and FocalNet-DINO.
2023.04.12 Multimask output mode and cascade prompt mode is available now.
2023.04.11 Our demo is available now. Please feel free to check it out.
2023.04.11 Swin-L+H-Deformable-DETR + SAM/FocalNet-L+DINO + SAM achieves strong COCO instance segmentation results: mask AP=46.8/49.1 by simply prompting SAM with boxes predicted by Swin-L+H-Deformable-DETR/FocalNet-L+DINO. (mask AP=46.5 based on ViTDet)πΊ
- Support Swin-L+H-Deformable-DETR+SAM
- Support FocalNet-L+DINO+SAM
- Support R50+H-Deformable-DETR+SAM/Swin-T+H-Deformable-DETR
- Support HuggingFace gradio demo
- Support cascade prompts (box prompt + mask prompt)
Detector | SAM | multimask ouput | Detector's Box AP | Mask AP | Config |
---|---|---|---|---|---|
R50+H-Deformable-DETR | sam-vit-b | β | 50.0 | 38.2 | config |
R50+H-Deformable-DETR | sam-vit-b | βοΈ | 50.0 | 39.9 | config |
R50+H-Deformable-DETR | sam-vit-l | β | 50.0 | 41.5 | config |
Swin-T+H-Deformable-DETR | sam-vit-b | β | 53.2 | 40.0 | config |
Swin-T+H-Deformable-DETR | sam-vit-l | β | 53.2 | 43.5 | config |
Swin-L+H-Deformable-DETR | sam-vit-b | β | 58.0 | 42.5 | config |
Swin-L+H-Deformable-DETR | sam-vit-l | β | 58.0 | 46.3 | config |
Swin-L+H-Deformable-DETR | sam-vit-h | β | 58.0 | 46.8 | config |
FocalNet-L+DINO | sam-vit-b | β | 63.2 | 44.5 | config |
FocalNet-L+DINO | sam-vit-l | β | 63.2 | 48.6 | config |
FocalNet-L+DINO | sam-vit-h | β | 63.2 | 49.1 | config |
Detector | SAM | multimask ouput | Detector's Box AP | Mask AP | Config |
---|---|---|---|---|---|
R50+H-Deformable-DETR | sam-vit-b | β | 50.0 | 38.8 | config |
R50+H-Deformable-DETR | sam-vit-b | βοΈ | 50.0 | 40.5 | config |
Swin-L+H-Deformable-DETR | sam-vit-h | βοΈ | 58.0 | 47.3 | config |
FocalNet-L+DINO | sam-vit-h | βοΈ | 63.2 | 49.6 | config |
Note
multimask ouput: If multimask output is βοΈ, SAM will predict three masks for each prompt, and the segmentation result will be the one with the highest predicted IoU. Otherwise, if multimask output is β, SAM will return only one mask for each prompt, which will be used as the segmentation result.
cascade-prompt: In the cascade-prompt setting, the segmentation process involves two stages. In the first stage, a coarse mask is predicted with a bounding box prompt. The second stage then utilizes both the bounding box and the coarse mask as prompts to predict the final segmentation result. Note that if multimask output is βοΈ, the first stage will predict three coarse masks, and the second stage will use the mask with the highest predicted IoU as the prompt.
πΊπΊπΊ Add dockerhub enviroment
docker pull kxqt/prompt-sam-torch1.12-cuda11.6:20230410
nvidia-docker run -it --shm-size=4096m -v {your_path}:{path_in_docker} kxqt/prompt-sam-torch1.12-cuda11.6:20230410
We test the models under python=3.7.10,pytorch=1.10.2,cuda=10.2
. Other versions might be available as well.
- Clone this repository
git clone https://github.com/RockeyCoss/Instance-Segment-Anything
cd Instance-Segment-Anything
- Install PyTorch
# an example
pip install torch torchvision
- Install MMCV
pip install -U openmim
mim install "mmcv-full<2.0.0"
- Install MMDetection's requirements
pip install -r requirements.txt
- Compile CUDA operators
cd projects/instance_segment_anything/ops
python setup.py build install
cd ../../..
Please note that the mmdet
package does not need to be installed. If your environment already has the mmdet
package installed, you can run the following command before executing other scripts:
export PYTHONPATH=$(pwd)
Please refer to data preparation.
- Install wget
pip install wget
- SAM checkpoints
mkdir ckpt
cd ckpt
python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
cd ..
- Here are the checkpoints for the detection models. You can download only the checkpoints you need.
# R50+H-Deformable-DETR
cd ckpt
python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o r50_hdetr.pth
cd ..
python tools/convert_ckpt.py ckpt/r50_hdetr.pth ckpt/r50_hdetr.pth
# Swin-T+H-Deformable-DETR
cd ckpt
python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o swin_t_hdetr.pth
cd ..
python tools/convert_ckpt.py ckpt/swin_t_hdetr.pth ckpt/swin_t_hdetr.pth
# Swin-L+H-Deformable-DETR
cd ckpt
python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/decay0.05_drop_path0.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o swin_l_hdetr.pth
cd ..
python tools/convert_ckpt.py ckpt/swin_l_hdetr.pth ckpt/swin_l_hdetr.pth
# FocalNet-L+DINO
cd ckpt
python -m wget https://projects4jw.blob.core.windows.net/focalnet/release/detection/focalnet_large_fl4_o365_finetuned_on_coco.pth -o focalnet_l_dino.pth
cd ..
python tools/convert_ckpt.py ckpt/focalnet_l_dino.pth ckpt/focalnet_l_dino.pth
- Evaluate Metrics
# single GPU
python tools/test.py path/to/the/config/file --eval segm
# multiple GPUs
bash tools/dist_test.sh path/to/the/config/file num_gpus --eval segm
- Visualize Segmentation Results
python tools/test.py path/to/the/config/file --show-dir path/to/the/visualization/results
We also provide a UI for displaying the segmentation results that is built with gradio. To launch the demo, simply run the following command in a terminal:
pip install gradio
python app.py
This demo is also hosted on HuggingFace here.
Segment Anything
@article{kirillov2023segany,
title={Segment Anything},
author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
journal={arXiv:2304.02643},
year={2023}
}
H-Deformable-DETR
@article{jia2022detrs,
title={DETRs with Hybrid Matching},
author={Jia, Ding and Yuan, Yuhui and He, Haodi and Wu, Xiaopei and Yu, Haojun and Lin, Weihong and Sun, Lei and Zhang, Chao and Hu, Han},
journal={arXiv preprint arXiv:2207.13080},
year={2022}
}
Swin Transformer
@inproceedings{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2021}
}
DINO
@misc{zhang2022dino,
title={DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection},
author={Hao Zhang and Feng Li and Shilong Liu and Lei Zhang and Hang Su and Jun Zhu and Lionel M. Ni and Heung-Yeung Shum},
year={2022},
eprint={2203.03605},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
FocalNet
@misc{yang2022focalnet,
author = {Yang, Jianwei and Li, Chunyuan and Dai, Xiyang and Yuan, Lu and Gao, Jianfeng},
title = {Focal Modulation Networks},
publisher = {arXiv},
year = {2022},
}