Skip to content

A basic architecture of "DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks"

Notifications You must be signed in to change notification settings

Rongpeng-Lin/A-DA-GAN-architecture

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A-DA-GAN-architecture

A basic architecture of "DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks"

 This is a basic architecture implementation, and the structure of the article is outlined below:
  1. The image is encoded using an encoder (convolutional architecture).
  2. Use another set of convolutions combined with a full join to generate an attention area (similar to the border of the target detection) and perform a masking operation on the original image.
  3. The mask operation does not use the 01 mask, but instead uses sigmoid instead of direction propagation, making the change more 'soft'.

how to use

 1. There are some samples marked incorrectly in the svhn data set, first clean the sample:
  python D:\SVHN_dataset\train\DAE_GAN\Data.py --op_type="clear" --im_dir="D:/SVHN_dataset/train/forcmd/" --raw_dir="D:/SVHN_dataset/train/forcmd/" --if_clip=False
 2. Create positive and negative sample data:
  python D:\SVHN_dataset\train\DAE_GAN\Data.py --op_type="create" --im_dir="D:/SVHN_dataset/train/forcmd/" --raw_dir="D:/SVHN_dataset/train/forcmd/" --if_clip=False
 3. Perform training or loading:
  Train:
   python D:\SVHN_dataset\train\DAE_GAN\train.py --is_train="train" --im_size=64 --batch=2 --epoch=100 --hw_size=30 --k=2e5 --alpa=0.9 --beta=0.5 --im_dir="D:/SVHN_dataset/train/forcmd/" --save_dir="D:/SVHN_dataset/train/forcmd/ckpt/" --saveS_dir="D:/SVHN_dataset/train/forcmd/SampleS/" --saveT_dir="D:/SVHN_dataset/train/forcmd/SampleT/"
  Test:
   python D:\SVHN_dataset\train\DAE_GAN\train.py --is_train="test" --load_dir="D:/SVHN_dataset/train/ckpt/" --raw_im_dir="D:/SVHN_dataset/test" --save_im_dir="D:/SVHN_dataset/test_save/"

About

A basic architecture of "DA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages