ThreshNet: An Efficient DenseNet Using Threshold Mechanism to Reduce Connections
If you find ThreshNet useful in your research, please consider citing:
@article{ju2022threshnet,
title={ThreshNet: An Efficient DenseNet using Threshold Mechanism to Reduce Connections},
author={Ju, Rui-Yang and Lin, Ting-Yu and Jian, Jia-Hao and Chiang, Jen-Shiun and Yang, Wei-Bin},
journal={IEEE Access},
volume={10},
pages={82834--82843},
year={2022},
publisher={IEEE}
}
python3 main.py
optional arguments:
--lr default=1e-3 learning rate
--epoch default=200 number of epochs tp train for
--trainBatchSize default=100 training batch size
--testBatchSize default=100 test batch size
Name | GPU Time (ms) | C10 Error (%) | FLOPs (G) | MAdd (G) | Memory (MB) | #Params (M) |
---|---|---|---|---|---|---|
ThreshNet28 | 0.35 | 14.75 | 2.28 | 4.55 | 83.26 | 10.18 |
SqueezeNet | 0.36 | 14.25 | 2.69 | 5.32 | 211.42 | 0.78 |
MobileNet | 0.38 | 16.12 | 2.34 | 4.63 | 230.84 | 3.32 |
ThreshNet79 | 0.42 | 13.66 | 3.46 | 6.90 | 109.68 | 14.31 |
HarDNet68 | 0.44 | 14.66 | 4.26 | 8.51 | 49.28 | 17.57 |
MobileNetV2 | 0.46 | 14.06 | 2.42 | 4.75 | 384.78 | 2.37 |
ThreshNet95 | 0.46 | 13.31 | 4.07 | 8.12 | 132.34 | 16.19 |
HarDNet85 | 0.50 | 13.89 | 9.10 | 18.18 | 74.65 | 36.67 |
* GPU Time is the inference time per image on NVIDIA RTX 3050
- Python 3.6+
- Pytorch 0.4.0+
- Pandas 0.23.4+
- NumPy 1.14.3+
- Adam Optimizer
-
1e-3 for [1,74] epochs
-
5e-4 for [75,149] epochs
-
2.5e-4 for [150,200) epochs