Skip to content

RuiyangJu/ThreshNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 

Repository files navigation

ThreshNet

ThreshNet: An Efficient DenseNet Using Threshold Mechanism to Reduce Connections

PWC PWC

Architecture

Mechanism

Citation

If you find ThreshNet useful in your research, please consider citing:

@article{ju2022threshnet,
  title={ThreshNet: An Efficient DenseNet using Threshold Mechanism to Reduce Connections},
  author={Ju, Rui-Yang and Lin, Ting-Yu and Jian, Jia-Hao and Chiang, Jen-Shiun and Yang, Wei-Bin},
  journal={IEEE Access},
  volume={10},
  pages={82834--82843},
  year={2022},
  publisher={IEEE}
}

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Requirements
  5. Config
  6. References

Usage

python3 main.py

optional arguments:

--lr                default=1e-3    learning rate
--epoch             default=200     number of epochs tp train for
--trainBatchSize    default=100     training batch size
--testBatchSize     default=100     test batch size

Results

Name GPU Time (ms) C10 Error (%) FLOPs (G) MAdd (G) Memory (MB) #Params (M)
ThreshNet28 0.35 14.75 2.28 4.55 83.26 10.18
SqueezeNet 0.36 14.25 2.69 5.32 211.42 0.78
MobileNet 0.38 16.12 2.34 4.63 230.84 3.32
ThreshNet79 0.42 13.66 3.46 6.90 109.68 14.31
HarDNet68 0.44 14.66 4.26 8.51 49.28 17.57
MobileNetV2 0.46 14.06 2.42 4.75 384.78 2.37
ThreshNet95 0.46 13.31 4.07 8.12 132.34 16.19
HarDNet85 0.50 13.89 9.10 18.18 74.65 36.67

* GPU Time is the inference time per image on NVIDIA RTX 3050

Requirements

  • Python 3.6+
  • Pytorch 0.4.0+
  • Pandas 0.23.4+
  • NumPy 1.14.3+

Config

Optimizer
  • Adam Optimizer
Learning Rate
  • 1e-3 for [1,74] epochs

  • 5e-4 for [75,149] epochs

  • 2.5e-4 for [150,200) epochs

References

GitHub

Releases

No releases published

Packages

No packages published

Languages