Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: mark various API elements as internal #587

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
File renamed without changes.
File renamed without changes.
4 changes: 2 additions & 2 deletions src/safeds/data/image/containers/_image.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from __future__ import annotations

import sys
import io
import sys
import warnings
from pathlib import Path
from typing import TYPE_CHECKING
Expand All @@ -12,7 +12,7 @@
from PIL.Image import open as pil_image_open
from torch import Tensor

from safeds.config import _get_device
from safeds._config import _get_device

if TYPE_CHECKING:
from torch.types import Device
Expand Down
4 changes: 2 additions & 2 deletions src/safeds/data/tabular/containers/_table.py
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,7 @@ def from_rows(rows: list[Row]) -> Table:
dataframe: DataFrame = pd.concat(row_array, ignore_index=True)
dataframe.columns = column_names_compare

schema = Schema.merge_multiple_schemas([row.schema for row in rows])
schema = Schema._merge_multiple_schemas([row.schema for row in rows])

return Table._from_pandas_dataframe(dataframe, schema)

Expand Down Expand Up @@ -1012,7 +1012,7 @@ def add_row(self, row: Row) -> Table:

new_df = pd.concat([self._data, row._data]).infer_objects()
new_df.columns = self.column_names
schema = Schema.merge_multiple_schemas([self.schema, row.schema])
schema = Schema._merge_multiple_schemas([self.schema, row.schema])
result = Table._from_pandas_dataframe(new_df, schema)

for column in int_columns:
Expand Down
8 changes: 6 additions & 2 deletions src/safeds/data/tabular/typing/_schema.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,11 @@ def __sizeof__(self) -> int:
-------
Size of this object in bytes.
"""
return sum(map(sys.getsizeof, self._schema.keys())) + sum(map(sys.getsizeof, self._schema.values())) + sys.getsizeof(self._schema)
return (
sum(map(sys.getsizeof, self._schema.keys()))
+ sum(map(sys.getsizeof, self._schema.values()))
+ sys.getsizeof(self._schema)
)

def __str__(self) -> str:
"""
Expand Down Expand Up @@ -237,7 +241,7 @@ def to_dict(self) -> dict[str, ColumnType]:
return dict(self._schema) # defensive copy

@staticmethod
def merge_multiple_schemas(schemas: list[Schema]) -> Schema:
def _merge_multiple_schemas(schemas: list[Schema]) -> Schema:
"""
Merge multiple schemas into one.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ class SupportVectorMachineKernel(ABC):
"""The abstract base class of the different subclasses supported by the `Kernel`."""

@abstractmethod
def get_sklearn_kernel(self) -> object:
def _get_sklearn_kernel(self) -> object:
"""
Get the kernel of the given SupportVectorMachine.

Expand Down Expand Up @@ -85,7 +85,7 @@ def kernel(self) -> SupportVectorMachineKernel | None:

class Kernel:
class Linear(SupportVectorMachineKernel):
def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the linear kernel.

Expand All @@ -102,7 +102,7 @@ def __init__(self, degree: int):
raise OutOfBoundsError(degree, name="degree", lower_bound=ClosedBound(1))
self._degree = degree

def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the polynomial kernel.

Expand All @@ -114,7 +114,7 @@ def get_sklearn_kernel(self) -> str:
return "poly"

class Sigmoid(SupportVectorMachineKernel):
def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the sigmoid kernel.

Expand All @@ -126,7 +126,7 @@ def get_sklearn_kernel(self) -> str:
return "sigmoid"

class RadialBasisFunction(SupportVectorMachineKernel):
def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the radial basis function (RBF) kernel.

Expand Down
10 changes: 5 additions & 5 deletions src/safeds/ml/classical/regression/_support_vector_machine.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ class SupportVectorMachineKernel(ABC):
"""The abstract base class of the different subclasses supported by the `Kernel`."""

@abstractmethod
def get_sklearn_kernel(self) -> object:
def _get_sklearn_kernel(self) -> object:
"""
Get the kernel of the given SupportVectorMachine.

Expand Down Expand Up @@ -85,7 +85,7 @@ def kernel(self) -> SupportVectorMachineKernel | None:

class Kernel:
class Linear(SupportVectorMachineKernel):
def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the linear kernel.

Expand All @@ -102,7 +102,7 @@ def __init__(self, degree: int):
raise OutOfBoundsError(degree, name="degree", lower_bound=ClosedBound(1))
self._degree = degree

def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the polynomial kernel.

Expand All @@ -114,7 +114,7 @@ def get_sklearn_kernel(self) -> str:
return "poly"

class Sigmoid(SupportVectorMachineKernel):
def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the sigmoid kernel.

Expand All @@ -126,7 +126,7 @@ def get_sklearn_kernel(self) -> str:
return "sigmoid"

class RadialBasisFunction(SupportVectorMachineKernel):
def get_sklearn_kernel(self) -> str:
def _get_sklearn_kernel(self) -> str:
"""
Get the name of the radial basis function (RBF) kernel.

Expand Down
File renamed without changes.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import torch
from safeds.config import _get_device
from safeds._config import _get_device


def test_device() -> None:
Expand Down
6 changes: 3 additions & 3 deletions tests/safeds/data/tabular/typing/test_schema.py
Original file line number Diff line number Diff line change
Expand Up @@ -280,7 +280,7 @@ class TestMergeMultipleSchemas:
)
def test_should_raise_if_column_names_are_different(self, schemas: list[Schema], error_msg_regex: str) -> None:
with pytest.raises(UnknownColumnNameError, match=error_msg_regex):
Schema.merge_multiple_schemas(schemas)
Schema._merge_multiple_schemas(schemas)

@pytest.mark.parametrize(
("schemas", "expected"),
Expand Down Expand Up @@ -470,10 +470,10 @@ def test_should_raise_if_column_names_are_different(self, schemas: list[Schema],
],
)
def test_should_return_merged_schema(self, schemas: list[Schema], expected: Schema) -> None:
assert Schema.merge_multiple_schemas(schemas) == expected
assert Schema._merge_multiple_schemas(schemas) == expected
schemas.reverse()
assert (
Schema.merge_multiple_schemas(schemas) == expected
Schema._merge_multiple_schemas(schemas) == expected
) # test the reversed list because the first parameter is handled differently


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
def test_should_get_sklearn_kernel_linear(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.Linear())
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.Linear)
linear_kernel = svm.kernel.get_sklearn_kernel()
linear_kernel = svm.kernel._get_sklearn_kernel()
assert linear_kernel == "linear"

@pytest.mark.parametrize("degree", [-1, 0], ids=["minus_one", "zero"])
Expand All @@ -52,19 +52,19 @@ def test_should_raise_if_degree_less_than_1(self, degree: int) -> None:
def test_should_get_sklearn_kernel_polynomial(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.Polynomial(degree=2))
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.Polynomial)
poly_kernel = svm.kernel.get_sklearn_kernel()
poly_kernel = svm.kernel._get_sklearn_kernel()
assert poly_kernel == "poly"

def test_should_get_sklearn_kernel_sigmoid(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.Sigmoid())
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.Sigmoid)
sigmoid_kernel = svm.kernel.get_sklearn_kernel()
sigmoid_kernel = svm.kernel._get_sklearn_kernel()
assert sigmoid_kernel == "sigmoid"

def test_should_get_sklearn_kernel_rbf(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.RadialBasisFunction())
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.RadialBasisFunction)
rbf_kernel = svm.kernel.get_sklearn_kernel()
rbf_kernel = svm.kernel._get_sklearn_kernel()
assert rbf_kernel == "rbf"

def test_should_get_kernel_name(self) -> None:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
def test_should_get_sklearn_kernel_linear(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.Linear())
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.Linear)
linear_kernel = svm.kernel.get_sklearn_kernel()
linear_kernel = svm.kernel._get_sklearn_kernel()
assert linear_kernel == "linear"

@pytest.mark.parametrize("degree", [-1, 0], ids=["minus_one", "zero"])
Expand All @@ -52,19 +52,19 @@ def test_should_raise_if_degree_less_than_1(self, degree: int) -> None:
def test_should_get_sklearn_kernel_polynomial(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.Polynomial(degree=2))
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.Polynomial)
poly_kernel = svm.kernel.get_sklearn_kernel()
poly_kernel = svm.kernel._get_sklearn_kernel()
assert poly_kernel == "poly"

def test_should_get_sklearn_kernel_sigmoid(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.Sigmoid())
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.Sigmoid)
sigmoid_kernel = svm.kernel.get_sklearn_kernel()
sigmoid_kernel = svm.kernel._get_sklearn_kernel()
assert sigmoid_kernel == "sigmoid"

def test_should_get_sklearn_kernel_rbf(self) -> None:
svm = SupportVectorMachine(c=2, kernel=SupportVectorMachine.Kernel.RadialBasisFunction())
assert isinstance(svm.kernel, SupportVectorMachine.Kernel.RadialBasisFunction)
rbf_kernel = svm.kernel.get_sklearn_kernel()
rbf_kernel = svm.kernel._get_sklearn_kernel()
assert rbf_kernel == "rbf"

def test_should_get_kernel_name(self) -> None:
Expand Down