Data and code for the WACV 2022 paper,
"Hole-robust Wireframe Detection" by Naejin Kong, Kiwoong Park and Harshith Goka
See arXiv Version.
See dataset/
.
See algorithm/
.
- Ubuntu 18.04
- Python 3.7
- Virtualenv
- Nvidia GPU + Cuda 10.1
- Clone this repository.
- Set up virtualenv.
# Create a new virtualenv
$ sudo apt-get install python3.7-dev
$ virtualenv venv --python=python3.7
# Activate virtualenv
$ source venv/bin/activate
# Install packages
(venv) $ pip install --upgrade pip
(venv) $ pip install -r requirements.txt \
-f https://download.pytorch.org/whl/torch_stable.html \
-f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html
(venv) $ pip uninstall pycocotools
(venv) $ pip install pycocotools==2.0.2 --no-binary pycocotools
Please refer to LICENSE
.
@InProceedings{Kong_2022_WACV,
author = {Kong, Naejin and Park, Kiwoong and Goka, Harshith},
title = {Hole-Robust Wireframe Detection},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1636-1645}
}