Skip to content

Commit

Permalink
feat: Implement SmartScraperMultiParseMergeFirstGraph class that scra…
Browse files Browse the repository at this point in the history
…pes a list of URLs and merge the content first and finally generates answers to a given prompt.

(Different from the SmartScraperMultiGraph is that in this case the content is merged before to be processed by the llm.)
  • Loading branch information
shenghongtw committed Oct 16, 2024
1 parent 612c644 commit 3e3e1b2
Show file tree
Hide file tree
Showing 2 changed files with 105 additions and 0 deletions.
2 changes: 2 additions & 0 deletions scrapegraphai/graphs/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,3 +25,5 @@
from .smart_scraper_multi_concat_graph import SmartScraperMultiConcatGraph
from .code_generator_graph import CodeGeneratorGraph
from .depth_search_graph import DepthSearchGraph
from .smart_scraper_multi_parse_merge_first_graph import SmartScraperMultiParseMergeFirstGraph
from .scrape_graph import ScrapeGraph
103 changes: 103 additions & 0 deletions scrapegraphai/graphs/smart_scraper_multi_parse_merge_first_graph.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
"""
SmartScraperMultiGraph Module
"""
from copy import deepcopy
from typing import List, Optional
from pydantic import BaseModel
from .base_graph import BaseGraph
from .abstract_graph import AbstractGraph
from .scrape_graph import ScrapeGraph
from ..nodes import (
GraphIteratorNode,
MergeAnswersNode,
)
from ..utils.copy import safe_deepcopy

class SmartScraperMultiParseMergeFirstGraph(AbstractGraph):
"""
SmartScraperMultiParseMergeFirstGraph is a scraping pipeline that scrapes a
list of URLs and merge the content first and finally generates answers to a given prompt.
It only requires a user prompt and a list of URLs.
The difference with the SmartScraperMultiGraph is that in this case the content is merged
before to be passed to the llm.
Attributes:
prompt (str): The user prompt to search the internet.
llm_model (dict): The configuration for the language model.
embedder_model (dict): The configuration for the embedder model.
headless (bool): A flag to run the browser in headless mode.
verbose (bool): A flag to display the execution information.
model_token (int): The token limit for the language model.
Args:
prompt (str): The user prompt to search the internet.
source (List[str]): The source of the graph.
config (dict): Configuration parameters for the graph.
schema (Optional[BaseModel]): The schema for the graph output.
Example:
>>> search_graph = SmartScraperMultiParseMergeFirstGraph(
... prompt="Who is Marco Perini?",
... source= [
... "https://perinim.github.io/",
... "https://perinim.github.io/cv/"
... ],
... config={"llm": {"model": "openai/gpt-3.5-turbo"}}
... )
>>> result = search_graph.run()
"""

def __init__(self, prompt: str, source: List[str],
config: dict, schema: Optional[BaseModel] = None):

self.copy_config = safe_deepcopy(config)
self.copy_schema = deepcopy(schema)
super().__init__(prompt, config, source, schema)

def _create_graph(self) -> BaseGraph:
"""
Creates the graph of nodes representing the workflow for web scraping
and parsing and then merge the content and generates answers to a given prompt.
"""
graph_iterator_node = GraphIteratorNode(
input="user_prompt & urls",
output=["parsed_doc"],
node_config={
"graph_instance": ScrapeGraph,
"scraper_config": self.copy_config,
},
schema=self.copy_schema
)

merge_answers_node = MergeAnswersNode(
input="user_prompt & parsed_doc",
output=["answer"],
node_config={
"llm_model": self.llm_model,
"schema": self.copy_schema
}
)

return BaseGraph(
nodes=[
graph_iterator_node,
merge_answers_node,
],
edges=[
(graph_iterator_node, merge_answers_node),
],
entry_point=graph_iterator_node,
graph_name=self.__class__.__name__
)

def run(self) -> str:
"""
Executes the web scraping and parsing process first and
then concatenate the content and generates answers to a given prompt.
Returns:
str: The answer to the prompt.
"""
inputs = {"user_prompt": self.prompt, "urls": self.source}
self.final_state, self.execution_info = self.graph.execute(inputs)
return self.final_state.get("answer", "No answer found.")

0 comments on commit 3e3e1b2

Please sign in to comment.