Code release for A Cross-Granularity Feature Fusion Method for Fine-Grained Image Recogniton
python >= 3.7
PyTorch >= 1.3.1
torchvision >= 0.4.2
- Download datatsets for FGVC (e.g. CUB-200-2011, Standford Cars, FGVC-Aircraft, etc) and organize the structure as follows:
dataset
├── train
│ ├── class_001
| | ├── 1.jpg
| | ├── 2.jpg
| | └── ...
│ ├── class_002
| | ├── 1.jpg
| | ├── 2.jpg
| | └── ...
│ └── ...
└── test
├── class_001
| ├── 1.jpg
| ├── 2.jpg
| └── ...
├── class_002
| ├── 1.jpg
| ├── 2.jpg
| └── ...
└── ...
- Train from scratch with
train.py
.
If you find our code or paper useful to your research work, please consider citing our work using the following bibtex:
@article{wu2025cross, title={A cross-granularity feature fusion method for fine-grained image recognition}, author={Wu, Shan and Hu, Jun and Sun, Chen and Zhong, Fujin and Zhang, Qinghua and Wang, Guoyin}, journal={Applied Intelligence}, volume={55}, number={1}, pages={1--19}, year={2025}, publisher={Springer} }