Skip to content

A tool for de novo inference of D genes from immunosequencing data in diverse species

Notifications You must be signed in to change notification settings

ShawHahnLab/MINING-D

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MINING-D

MINING-D is a tool (written in Python 3.6.5) for inference of D genes using Rep-Seq data from diverse species. It takes as input a fasta file with consensus CDR3s from an immunosequencing dataset (see paper) and writes the inferred D genes in the output file in the fasta format.

There are two ways of running MINING-D.

  • From command line - To use default MINING-D parameters, use

    $ python MINING_D.py -i <input_CDR_file> -o <output_file> 
    

    To check all available options, use python MINING-D.py --help.

    $ python MINING_D.py --help 
    Usage: MINING_D.py [OPTIONS]
    
    Options:
    -i, --input_cdr_file TEXT  Input file with consensus CDR3s  [required]
    -o, --output_file TEXT     Output file to store inferred D genes  [required]
    -k INTEGER                 Length of starting k-mers  [default: 10]
    -n, --num_k_mers INTEGER   Number of most abundant k-mers to extend [default: 300]
    -p, --p_val_th FLOAT       p-value threshold for the extension procedure [default: 4.5e-36]
    -t, --n_cores INTEGER      Number of cores  [default: 10]
    --bidir_alpha FLOAT        Alpha for filtering bidirectional extensions (see paper)  [default: 0.5]
    -g, --cliq_th INTEGER      Similarity metric threshold for generating graphs [default: 2]
    --help                     Show this message and exit.
    
  • Jupyter Notebook - If you would like to run MINING-D in an interactive environment, there is a Jupyter notebook named "interactive_MINING_D.ipynb" in the repo. Please specify the input file, output file, and other parameters at the top of the notebook like shown in the example.

Dependencies

  • Biopython
  • Networkx<2.4
  • Joblib
  • NumPy
  • SciPy
  • click

About

A tool for de novo inference of D genes from immunosequencing data in diverse species

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.6%
  • Jupyter Notebook 13.4%