Skip to content

Sign-up-soon-after-papapa/DEA-Net

 
 

Repository files navigation

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

In this paper, we present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator. Different from other state-of-the-art techniques, the proposed network leverages a sample discriminator to realize interactive sample screening between an anchor-based unit and an anchor-free unit to generate eligible samples. Besides, multi-task joint training with a conservative anchor-based inference scheme enhances the performance of the proposed model while suppressing computational complexity. The proposed scheme supports both oriented and horizontal object detection tasks. Extensive experiments on two challenging aerial benchmarks (i.e., DOTA and HRSC2016) indicate that our method achieves state-of-the-art performance in accuracy with moderate inference speeds and computational overhead for training.

Introduction

This codebase is created to build benchmarks for object detection in aerial images. It is modified from mmdetection. The master branch works with PyTorch 1.1 or higher. If you would like to use PyTorch 0.4.1, please checkout to the pytorch-0.4.1 branch.

Results

Visualization results for oriented object detection on the test set of DOTA. Different class results

Comparison to the baseline on DOTA for oriented object detection. The figures with blue boxes are the results of the baseline and pink boxes are the results of our proposed DEA-Net. Baseline and DEA-Net results

Benchmark and model zoo

ImageNet Pretrained Model from Pytorch

Installation

Please refer to INSTALL.md for installation.

Get Started

Please see GETTING_STARTED.md for the basic usage of mmdetection.

Contributing

We appreciate all contributions to improve benchmarks for object detection in aerial images.

Thanks to the Third Party Libs

Pytorch

mmdetection

AerialDetection

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.4%
  • Cuda 6.3%
  • C++ 2.8%
  • Other 0.5%