forked from microsoft/nni
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #113 from Microsoft/master
merge master
- Loading branch information
Showing
41 changed files
with
3,670 additions
and
109 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
# Tutorial for Advanced Neural Architecture Search | ||
Currently many of the NAS algorithms leverage the technique of **weight sharing** among trials to accelerate its training process. For example, [ENAS][1] delivers 1000x effiency with '_parameter sharing between child models_', compared with the previous [NASNet][2] algorithm. Other NAS algorithms such as [DARTS][3], [Network Morphism][4], and [Evolution][5] is also leveraging, or has the potential to leverage weight sharing. | ||
|
||
This is a tutorial on how to enable weight sharing in NNI. | ||
|
||
## Weight Sharing among trials | ||
Currently we recommend sharing weights through NFS (Network File System), which supports sharing files across machines, and is light-weighted, (relatively) efficient. We also welcome contributions from the community on more efficient techniques. | ||
|
||
### Weight Sharing through NFS file | ||
With the NFS setup (see below), trial code can share model weight through loading & saving files. Here we recommend that user feed the tuner with the storage path: | ||
```yaml | ||
tuner: | ||
codeDir: path/to/customer_tuner | ||
classFileName: customer_tuner.py | ||
className: CustomerTuner | ||
classArgs: | ||
... | ||
save_dir_root: /nfs/storage/path/ | ||
``` | ||
And let tuner decide where to save & load weights and feed the paths to trials through `nni.get_next_parameters()`: | ||
|
||
![weight_sharing_design](./img/weight_sharing.png) | ||
|
||
For example, in tensorflow: | ||
```python | ||
# save models | ||
saver = tf.train.Saver() | ||
saver.save(sess, os.path.join(params['save_path'], 'model.ckpt')) | ||
# load models | ||
tf.init_from_checkpoint(params['restore_path']) | ||
``` | ||
where `'save_path'` and `'restore_path'` in hyper-parameter can be managed by the tuner. | ||
|
||
### NFS Setup | ||
In NFS, files are physically stored on a server machine, and trials on the client machine can read/write those files in the same way that they access local files. | ||
|
||
#### Install NFS on server machine | ||
First, install NFS server: | ||
```bash | ||
sudo apt-get install nfs-kernel-server | ||
``` | ||
Suppose `/tmp/nni/shared` is used as the physical storage, then run: | ||
```bash | ||
sudo mkdir -p /tmp/nni/shared | ||
sudo echo "/tmp/nni/shared *(rw,sync,no_subtree_check,no_root_squash)" >> /etc/exports | ||
sudo service nfs-kernel-server restart | ||
``` | ||
You can check if the above directory is successfully exported by NFS using `sudo showmount -e localhost` | ||
|
||
#### Install NFS on client machine | ||
First, install NFS client: | ||
```bash | ||
sudo apt-get install nfs-common | ||
``` | ||
Then create & mount the mounted directory of shared files: | ||
```bash | ||
sudo mkdir -p /mnt/nfs/nni/ | ||
sudo mount -t nfs 10.10.10.10:/tmp/nni/shared /mnt/nfs/nni | ||
``` | ||
where `10.10.10.10` should be replaced by the real IP of NFS server machine in practice. | ||
|
||
## Asynchornous Dispatcher Mode for trial dependency control | ||
The feature of weight sharing enables trials from different machines, in which most of the time **read after write** consistency must be assured. After all, the child model should not load parent model before parent trial finishes training. To deal with this, users can enable **asynchronous dispatcher mode** with `multiThread: true` in `config.yml` in NNI, where the dispatcher assign a tuner thread each time a `NEW_TRIAL` request comes in, and the tuner thread can decide when to submit a new trial by blocking and unblocking the thread itself. For example: | ||
```python | ||
def generate_parameters(self, parameter_id): | ||
self.thread_lock.acquire() | ||
indiv = # configuration for a new trial | ||
self.events[parameter_id] = threading.Event() | ||
self.thread_lock.release() | ||
if indiv.parent_id is not None: | ||
self.events[indiv.parent_id].wait() | ||
def receive_trial_result(self, parameter_id, parameters, reward): | ||
self.thread_lock.acquire() | ||
# code for processing trial results | ||
self.thread_lock.release() | ||
self.events[parameter_id].set() | ||
``` | ||
|
||
## Examples | ||
For details, please refer to this [simple weight sharing example](../test/async_sharing_test). We also provided a [practice example](../examples/trials/weight_sharing/ga_squad) for reading comprehension, based on previous [ga_squad](../examples/trials/ga_squad) example. | ||
|
||
[1]: https://arxiv.org/abs/1802.03268 | ||
[2]: https://arxiv.org/abs/1707.07012 | ||
[3]: https://arxiv.org/abs/1806.09055 | ||
[4]: https://arxiv.org/abs/1806.10282 | ||
[5]: https://arxiv.org/abs/1703.01041 |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
authorName: default | ||
experimentName: example_mnist | ||
trialConcurrency: 1 | ||
maxExecDuration: 1h | ||
maxTrialNum: 10 | ||
#choice: local, remote, pai, kubeflow | ||
trainingServicePlatform: frameworkcontroller | ||
searchSpacePath: search_space.json | ||
#choice: true, false | ||
useAnnotation: false | ||
tuner: | ||
#choice: TPE, Random, Anneal, Evolution | ||
builtinTunerName: TPE | ||
classArgs: | ||
#choice: maximize, minimize | ||
optimize_mode: maximize | ||
assessor: | ||
builtinAssessorName: Medianstop | ||
classArgs: | ||
optimize_mode: maximize | ||
gpuNum: 0 | ||
trial: | ||
codeDir: . | ||
taskRoles: | ||
- name: worker | ||
taskNum: 1 | ||
command: python3 mnist.py | ||
gpuNum: 1 | ||
cpuNum: 1 | ||
memoryMB: 8192 | ||
image: msranni/nni:latest | ||
frameworkAttemptCompletionPolicy: | ||
minFailedTaskCount: 1 | ||
minSucceededTaskCount: 1 | ||
frameworkcontrollerConfig: | ||
storage: nfs | ||
nfs: | ||
# Your NFS server IP, like 10.10.10.10 | ||
server: {your_nfs_server_ip} | ||
# Your NFS server export path, like /var/nfs/nni | ||
path: {your_nfs_server_export_path} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Copyright (c) Microsoft Corporation | ||
# All rights reserved. | ||
# | ||
# MIT License | ||
# | ||
# Permission is hereby granted, free of charge, | ||
# to any person obtaining a copy of this software and associated | ||
# documentation files (the "Software"), | ||
# to deal in the Software without restriction, including without limitation | ||
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and | ||
# to permit persons to whom the Software is furnished to do so, subject to the following conditions: | ||
# The above copyright notice and this permission notice shall be included | ||
# in all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING | ||
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | ||
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
|
||
import math | ||
|
||
import tensorflow as tf | ||
from tensorflow.python.ops.rnn_cell_impl import RNNCell | ||
|
||
|
||
def _get_variable(variable_dict, name, shape, initializer=None, dtype=tf.float32): | ||
if name not in variable_dict: | ||
variable_dict[name] = tf.get_variable( | ||
name=name, shape=shape, initializer=initializer, dtype=dtype) | ||
return variable_dict[name] | ||
|
||
|
||
class DotAttention: | ||
''' | ||
DotAttention | ||
''' | ||
|
||
def __init__(self, name, | ||
hidden_dim, | ||
is_vanilla=True, | ||
is_identity_transform=False, | ||
need_padding=False): | ||
self._name = '/'.join([name, 'dot_att']) | ||
self._hidden_dim = hidden_dim | ||
self._is_identity_transform = is_identity_transform | ||
self._need_padding = need_padding | ||
self._is_vanilla = is_vanilla | ||
self._var = {} | ||
|
||
@property | ||
def is_identity_transform(self): | ||
return self._is_identity_transform | ||
|
||
@property | ||
def is_vanilla(self): | ||
return self._is_vanilla | ||
|
||
@property | ||
def need_padding(self): | ||
return self._need_padding | ||
|
||
@property | ||
def hidden_dim(self): | ||
return self._hidden_dim | ||
|
||
@property | ||
def name(self): | ||
return self._name | ||
|
||
@property | ||
def var(self): | ||
return self._var | ||
|
||
def _get_var(self, name, shape, initializer=None): | ||
with tf.variable_scope(self.name): | ||
return _get_variable(self.var, name, shape, initializer) | ||
|
||
def _define_params(self, src_dim, tgt_dim): | ||
hidden_dim = self.hidden_dim | ||
self._get_var('W', [src_dim, hidden_dim]) | ||
if not self.is_vanilla: | ||
self._get_var('V', [src_dim, hidden_dim]) | ||
if self.need_padding: | ||
self._get_var('V_s', [src_dim, src_dim]) | ||
self._get_var('V_t', [tgt_dim, tgt_dim]) | ||
if not self.is_identity_transform: | ||
self._get_var('T', [tgt_dim, src_dim]) | ||
self._get_var('U', [tgt_dim, hidden_dim]) | ||
self._get_var('b', [1, hidden_dim]) | ||
self._get_var('v', [hidden_dim, 1]) | ||
|
||
def get_pre_compute(self, s): | ||
''' | ||
:param s: [src_sequence, batch_size, src_dim] | ||
:return: [src_sequence, batch_size. hidden_dim] | ||
''' | ||
hidden_dim = self.hidden_dim | ||
src_dim = s.get_shape().as_list()[-1] | ||
assert src_dim is not None, 'src dim must be defined' | ||
W = self._get_var('W', shape=[src_dim, hidden_dim]) | ||
b = self._get_var('b', shape=[1, hidden_dim]) | ||
return tf.tensordot(s, W, [[2], [0]]) + b | ||
|
||
def get_prob(self, src, tgt, mask, pre_compute, return_logits=False): | ||
''' | ||
:param s: [src_sequence_length, batch_size, src_dim] | ||
:param h: [batch_size, tgt_dim] or [tgt_sequence_length, batch_size, tgt_dim] | ||
:param mask: [src_sequence_length, batch_size]\ | ||
or [tgt_sequence_length, src_sequence_length, batch_sizse] | ||
:param pre_compute: [src_sequence_length, batch_size, hidden_dim] | ||
:return: [src_sequence_length, batch_size]\ | ||
or [tgt_sequence_length, src_sequence_length, batch_size] | ||
''' | ||
s_shape = src.get_shape().as_list() | ||
h_shape = tgt.get_shape().as_list() | ||
src_dim = s_shape[-1] | ||
tgt_dim = h_shape[-1] | ||
assert src_dim is not None, 'src dimension must be defined' | ||
assert tgt_dim is not None, 'tgt dimension must be defined' | ||
|
||
self._define_params(src_dim, tgt_dim) | ||
|
||
if len(h_shape) == 2: | ||
tgt = tf.expand_dims(tgt, 0) | ||
if pre_compute is None: | ||
pre_compute = self.get_pre_compute(src) | ||
|
||
buf0 = pre_compute | ||
buf1 = tf.tensordot(tgt, self.var['U'], axes=[[2], [0]]) | ||
buf2 = tf.tanh(tf.expand_dims(buf0, 0) + tf.expand_dims(buf1, 1)) | ||
|
||
if not self.is_vanilla: | ||
xh1 = tgt | ||
xh2 = tgt | ||
s1 = src | ||
if self.need_padding: | ||
xh1 = tf.tensordot(xh1, self.var['V_t'], 1) | ||
xh2 = tf.tensordot(xh2, self.var['S_t'], 1) | ||
s1 = tf.tensordot(s1, self.var['V_s'], 1) | ||
if not self.is_identity_transform: | ||
xh1 = tf.tensordot(xh1, self.var['T'], 1) | ||
xh2 = tf.tensordot(xh2, self.var['T'], 1) | ||
buf3 = tf.expand_dims(s1, 0) * tf.expand_dims(xh1, 1) | ||
buf3 = tf.tanh(tf.tensordot(buf3, self.var['V'], axes=[[3], [0]])) | ||
buf = tf.reshape(tf.tanh(buf2 + buf3), shape=tf.shape(buf3)) | ||
else: | ||
buf = buf2 | ||
v = self.var['v'] | ||
e = tf.tensordot(buf, v, [[3], [0]]) | ||
e = tf.squeeze(e, axis=[3]) | ||
tmp = tf.reshape(e + (mask - 1) * 10000.0, shape=tf.shape(e)) | ||
prob = tf.nn.softmax(tmp, 1) | ||
if len(h_shape) == 2: | ||
prob = tf.squeeze(prob, axis=[0]) | ||
tmp = tf.squeeze(tmp, axis=[0]) | ||
if return_logits: | ||
return prob, tmp | ||
return prob | ||
|
||
def get_att(self, s, prob): | ||
''' | ||
:param s: [src_sequence_length, batch_size, src_dim] | ||
:param prob: [src_sequence_length, batch_size]\ | ||
or [tgt_sequence_length, src_sequence_length, batch_size] | ||
:return: [batch_size, src_dim] or [tgt_sequence_length, batch_size, src_dim] | ||
''' | ||
buf = s * tf.expand_dims(prob, axis=-1) | ||
att = tf.reduce_sum(buf, axis=-3) | ||
return att |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
authorName: default | ||
experimentName: ga_squad_weight_sharing | ||
trialConcurrency: 2 | ||
maxExecDuration: 1h | ||
maxTrialNum: 200 | ||
#choice: local, remote, pai | ||
trainingServicePlatform: remote | ||
#choice: true, false | ||
useAnnotation: false | ||
multiThread: true | ||
tuner: | ||
codeDir: ../../../tuners/weight_sharing/ga_customer_tuner | ||
classFileName: customer_tuner.py | ||
className: CustomerTuner | ||
classArgs: | ||
optimize_mode: maximize | ||
population_size: 32 | ||
save_dir_root: /mnt/nfs/nni/ga_squad | ||
trial: | ||
command: python3 trial.py --input_file /mnt/nfs/nni/train-v1.1.json --dev_file /mnt/nfs/nni/dev-v1.1.json --max_epoch 1 --embedding_file /mnt/nfs/nni/glove.6B.300d.txt | ||
codeDir: . | ||
gpuNum: 1 | ||
machineList: | ||
- ip: remote-ip-0 | ||
port: 8022 | ||
username: root | ||
passwd: screencast | ||
- ip: remote-ip-1 | ||
port: 8022 | ||
username: root | ||
passwd: screencast |
Oops, something went wrong.