Skip to content

Commit

Permalink
Merge pull request #225 from microsoft/master
Browse files Browse the repository at this point in the history
merge master
  • Loading branch information
SparkSnail authored Jan 8, 2020
2 parents 1a5c017 + 4ed78ed commit 392460a
Show file tree
Hide file tree
Showing 53 changed files with 793 additions and 610 deletions.
2 changes: 1 addition & 1 deletion README.Makefile_zh_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ Python 包使用 setuptools 安装,所以安装路径依赖于 Python 配置
| ------------------ | ------------------------------------------ |
| `easy-install` | 安装依赖项,生成,安装 NNI,并编辑 `~/.bashrc` |
| `dev-easy-install` | 安装依赖项,生成,将 NNI 作为符号链接来安装,并编辑 `~/.bashrc` |
| `install` | 安装 Python 包,Node.js 模块,NNI 脚本和样例 |
| `install` | 安装 Python 包,Node.js 模块,NNI 脚本和示例 |
| `dev-install` | 将 Python 和 Node.js 模块作为符号链接安装,然后安装 scripts |
| `pip-install` | 安装依赖项,生成,安装 NNI,但不安装 Python 包 |

Expand Down
11 changes: 6 additions & 5 deletions README_zh_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ NNI 管理自动机器学习 (AutoML) 的 Experiment,**调度运行**由调优
* 想要更容易**实现或试验新的自动机器学习算法**的研究员或数据科学家,包括:超参调优算法,神经网络搜索算法以及模型压缩算法。
* 在机器学习平台中**支持自动机器学习**

### **NNI v1.2 已发布! &nbsp;[<img width="48" src="docs/img/release_icon.png" />](#nni-released-reminder)**
### **NNI v1.3 已发布! &nbsp;[<img width="48" src="docs/img/release_icon.png" />](#nni-released-reminder)**

## **NNI 功能一览**

Expand Down Expand Up @@ -224,7 +224,7 @@ Linux 和 MacOS
*`python >= 3.5` 的环境中运行命令: `git``wget`,确保安装了这两个组件。

```bash
git clone -b v1.2 https://github.com/Microsoft/nni.git
git clone -b v1.3 https://github.com/Microsoft/nni.git
cd nni
source install.sh
```
Expand All @@ -234,7 +234,7 @@ Windows
*`python >=3.5` 的环境中运行命令: `git``PowerShell`,确保安装了这两个组件。

```bash
git clone -b v1.2 https://github.com/Microsoft/nni.git
git clone -b v1.3 https://github.com/Microsoft/nni.git
cd nni
powershell -ExecutionPolicy Bypass -file install.ps1
```
Expand All @@ -250,7 +250,7 @@ Windows 上参考 [Windows 上使用 NNI](docs/zh_CN/Tutorial/NniOnWindows.md)
* 通过克隆源代码下载示例。

```bash
git clone -b v1.2 https://github.com/Microsoft/nni.git
git clone -b v1.3 https://github.com/Microsoft/nni.git
```

Linux 和 MacOS
Expand Down Expand Up @@ -326,7 +326,7 @@ You can use these commands to get more information about the experiment
* [如何调试](docs/zh_CN/Tutorial/HowToDebug.md)
* [自定义 Tuner](docs/zh_CN/Tuner/CustomizeTuner.md)
* [实现定制的训练平台](docs/zh_CN/TrainingService/HowToImplementTrainingService.md)
* [在 NNI 上实现新的 NAS Trainer](https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/NasInterface.md#implement-a-new-nas-trainer-on-nni)
* [在 NNI 上实现新的 NAS Trainer](https://github.com/microsoft/nni/blob/master/docs/zh_CN/NAS/NasInterface.md#implement-a-new-nas-trainer-on-nni)
* [自定义 Advisor](docs/zh_CN/Tuner/CustomizeAdvisor.md)

## **其它代码库和参考**
Expand All @@ -349,6 +349,7 @@ You can use these commands to get more information about the experiment
* [使用 NNI 为 SPTAG 自动调参](docs/zh_CN/CommunitySharings/SptagAutoTune.md)
* [使用 NNI 为 scikit-learn 查找超参](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
* **博客** - [AutoML 工具(Advisor,NNI 与 Google Vizier)的对比](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) 作者:[@gaocegege](https://github.com/gaocegege) - kubeflow/katib 的设计与实现的总结与分析章节
* **Blog (中文)** - [NNI 2019 新功能汇总](https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA) by @squirrelsc

## **反馈**

Expand Down
6 changes: 3 additions & 3 deletions docs/en_US/TrialExample/SklearnExamples.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ nnictl create --config ./config.yml

This example uses the dataset of digits, which is made up of 1797 8x8 images, and each image is a hand-written digit, the goal is to classify these images into 10 classes.

In this example, we use SVC as the model, and choose some parameters of this model, including `"C", "keral", "degree", "gamma" and "coef0"`. For more information of these parameters, please [refer](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html).
In this example, we use SVC as the model, and choose some parameters of this model, including `"C", "kernel", "degree", "gamma" and "coef0"`. For more information of these parameters, please [refer](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html).

### 2.2 regression

Expand Down Expand Up @@ -64,7 +64,7 @@ It is easy to use NNI in your scikit-learn code, there are only a few steps.
```json
{
"C": {"_type":"uniform","_value":[0.1, 1]},
"keral": {"_type":"choice","_value":["linear", "rbf", "poly", "sigmoid"]},
"kernel": {"_type":"choice","_value":["linear", "rbf", "poly", "sigmoid"]},
"degree": {"_type":"choice","_value":[1, 2, 3, 4]},
"gamma": {"_type":"uniform","_value":[0.01, 0.1]},
"coef0 ": {"_type":"uniform","_value":[0.01, 0.1]}
Expand All @@ -76,7 +76,7 @@ It is easy to use NNI in your scikit-learn code, there are only a few steps.
```python
params = {
'C': 1.0,
'keral': 'linear',
'kernel': 'linear',
'degree': 3,
'gamma': 0.01,
'coef0': 0.01
Expand Down
104 changes: 0 additions & 104 deletions docs/zh_CN/AdvancedFeature/AdvancedNas.md

This file was deleted.

Loading

0 comments on commit 392460a

Please sign in to comment.