Official repository for the paper "Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning" (ICPR 2024). This repository is based on the original Mammoth. Backbones, datasets and models are kept for compatibility with the original repository.
- Use
./utils/main.py
to run experiments. - Use argument
--model CHARON
to run our model.
- Continual Human Action Recognition On skeletoNs (CHARON)
- eXtended-DER (X-DER)
- Dark Experience Replay (DER)
- Dark Experience Replay++ (DER++)
- Learning a Unified Classifier Incrementally via Rebalancing (LUCIR)
- Greedy Sampler and Dumb Learner (GDumb)
- Bias Correction (BiC)
- Regular Polytope Classifier (RPC)
- Gradient Episodic Memory (GEM)
- Averaged GEM (A-GEM)
- A-GEM with Reservoir (A-GEM-R)
- Experience Replay (ER)
- Meta-Experience Replay (MER)
- Function Distance Regularization (FDR)
- Greedy gradient-based Sample Selection (GSS)
- Hindsight Anchor Learning (HAL)
- Incremental Classifier and Representation Learning (iCaRL)
- online Elastic Weight Consolidation (oEWC)
- Synaptic Intelligence (SI)
- Learning without Forgetting (LwF)
- Progressive Neural Networks (PNN)
- Sequential NTU-60 (Class-Il / Task-IL)
- Sequential NTU-120 (Class-Il / Task-IL)
- Sequential MNIST (Class-Il / Task-IL)
- Sequential CIFAR-10 (Class-Il / Task-IL)
- Sequential CIFAR-100 (Class-Il / Task-IL)
- Sequential Tiny ImageNet (Class-Il / Task-IL)
- Permuted MNIST (Domain-IL)
- Rotated MNIST (Domain-IL)
- MNIST-360 (General Continual Learning)
@inproceedings{mosconi2024mask,
title={Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning},
author={Mosconi, Matteo and Sorokin, Andriy and Panariello, Aniello and Porrello, Angelo and Bonato, Jacopo and Cotogni, Marco and Sabetta, Luigi and Calderara, Simone and Cucchiara, Rita},
booktitle={International Conference on Pattern Recognition},
year=2024
}