Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PORKBUN: support CAA #3200

Merged
merged 1 commit into from
Nov 12, 2024
Merged

PORKBUN: support CAA #3200

merged 1 commit into from
Nov 12, 2024

Conversation

imlonghao
Copy link
Contributor

close #3199

Testes passed

CAA with whitespace not supported.

=== RUN   TestDNSProviders/example.com/33:CAA:CAA_whitespace
    integration_test.go:248:
        ± MODIFY example.com CAA (128 issuewild ";" ttl=600) -> (0 issue "letsencrypt.org; validationmethods=dns-01; accounturi=https://acme-v02.api.letsencrypt.org/acme/acct/1234" ttl=600), porkbun ID: 437665127
    integration_test.go:269: Expected 0 corrections on second run, but found 1.
    integration_test.go:271: UNEXPECTED #0: ± MODIFY example.com CAA (0 issue "letsencrypt.org;" ttl=600) -> (0 issue "letsencrypt.org; validationmethods=dns-01; accounturi=https://acme-v02.api.letsencrypt.org/acme/acct/1234" ttl=600), porkbun ID: 437665127

@tlimoncelli
Copy link
Contributor

I love when a new feature can be added so simply!

Please run go generate and commit the new documentation/providers.md file.

Thanks!

@imlonghao
Copy link
Contributor Author

done.

@tlimoncelli tlimoncelli merged commit 5d8e711 into StackExchange:main Nov 12, 2024
2 checks passed
@Ryehdhdhd
Copy link

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report, accuracy_score

from keras.layers import Input, Dense

from keras.models import Model


class VIZOR:

    def __init__(self, data_file):

        self.data_file = data_file

        self.gestures = {}

        self.voice_commands = {}

        self.user_preferences = {}

        self.data_analysis_model = NeuralNetwork()

        self.context_model = ContextAwareness()

        self.device_integration = []

        self.power_status = True

        self.state_indicator = "OFF"

        self.logic_agent = LogicAgent()

        self.model = RandomForestClassifier(n_estimators=100, random_state=42)

        self.data = None

        self.project_manager = ProjectManager()


    def initialize(self):

        self.load_gestures()

        self.load_voice_commands()

        self.load_user_preferences()

        self.load_data()

        self.state_indicator = "ON"


    def load_gestures(self):

        self.gestures = {

            "swipe_left": self.handle_swipe_left,

            "swipe_right": self.handle_swipe_right,

        }


    def load_voice_commands(self):

        self.voice_commands = {

            "open_app": self.open_application,

            "close_app": self.close_application,

        }


    def load_user_preferences(self):

        self.user_preferences = self.data_analysis_model.analyze_user_data()


    def load_data(self):

        self.data = pd.read_csv(self.data_file)

        print("Данные загружены.")


    def handle_gesture(self, gesture):

        if gesture in self.gestures:

            self.gestures[gesture]()


    def handle_voice_command(self, command):

        if command in self.voice_commands:

            self.voice_commands[command]()


    def open_application(self):

        print("Приложение открыто.")


    def close_application(self):

        print("Приложение закрыто.")


    def analyze_user_data(self, data):

        self.user_preferences = self.data_analysis_model.train(data)


    def provide_contextual_suggestions(self):

        suggestions = self.context_model.get_suggestions()

        return suggestions


    def integrate_device(self, device):

        self.device_integration.append(device)


    def analyze_data(self):

        X = self.data.drop('target', axis=1)

        y = self.data['target']

        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


        self.model.fit(X_train, y_train)

        y_pred = self.model.predict(X_test)

        print(classification_report(y_test, y_pred))

        print("Точность:", accuracy_score(y_test, y_pred))


        self.visualize_feature_importance(X)


    def visualize_feature_importance(self, X):

        importances = self.model.feature_importances_

        indices = np.argsort(importances)[::-1]


        plt.figure(figsize=(12, 6))

        plt.title("Важность признаков")

        plt.bar(range(X.shape[1]), importances[indices], align="center")

        plt.xticks(range(X.shape[1]), X.columns[indices], rotation=90)

        plt.xlim([-1, X.shape[1]])

        plt.show()


class NeuralNetwork:

    def train(self, data):

        processed_preferences = []  # Логика обработки

        return processed_preferences


class ContextAwareness:

    def get_suggestions(self):

        return ["предложение_1", "предложение_2"]


class LogicAgent:

    def __init__(self):

        self.model = self.create_model()


    def create_model(self):

        model = tf.keras.Sequential([

            tf.keras.layers.Dense(64, activation='relu', input_shape=(None, )),

            tf.keras.layers.Dense(64, activation='relu'),

            tf.keras.layers.Dense(1, activation='sigmoid')

        ])

        model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

        return model


    def predict(self, input_data):

        return self.model.predict(input_data)


    def train(self, input_data, labels):

        self.model.fit(input_data, labels, epochs=10)


class ProjectManager:

    def __init__(self):

        self.projects = []


    def create_project(self, name, description):

        project = {"name": name, "description": description, "status": "active"}

        self.projects.append(project)

        print(f"Проект '{name}' создан.")


    def track_projects(self):

        for project in self.projects:

            print(f"Проект: {project['name']}, Статус: {project['status']}")


    def update_project_status(self, name, status):

        for project in self.projects:

            if project['name'] == name:

                project['status'] = status

                print(f"Статус проекта '{name}' обновлён на '{status}'.")


    def generate_report(self):

        report = pd.DataFrame(self.projects)

        print(report)


    def schedule_meeting(self, project_name, date_time):

        print(f"Встреча для проекта '{project_name}' запланирована на {date_time}.")


    def manage_risks(self, project_name, risks):

        print(f"Управление рисками для проекта '{project_name}': {risks}")


    def document_project(self, project_name, documentation):

        print(f"Документация для проекта '{project_name}': {documentation}")


# Пример использования

if __name__ == "__main__":

    vizor = VIZOR('data.csv'# Замените на ваш файл данных

    vizor.initialize()


    # Обработка жеста

    vizor.handle_gesture("swipe_left")


    # Обработка голосовой команды

    vizor.handle_voice_command("open_app")


    # Анализ данных пользователя

    user_data = ["data_point_1", "data_point_2"]

    vizor.analyze_user_data(user_data)


    # Получение предложений на основе контекста

    suggestions = vizor.provide_contextual_suggestions()

    print(suggestions)


    # Интеграция с устройством

    vizor.integrate_device("smart_home_device")


    # Анализ данных

    vizor.analyze_data()


    # Управление проектами

    vizor.project_manager.create_project("Проект A", "Описание проекта A")

    vizor.project_manager.track_projects()

    vizor.project_manager.update_project_status("Проект A", "завершён")

    vizor.project_manager.generate_report()

    vizor.project_manager.schedule_meeting("Проект A", "2024-12-01 10:00")

    vizor.project_manager.manage_risks("Проект A", ["Риск 1", "Риск 2"])

    vizor.project_manager.document_project("Проект A", "Документация по проекту A")

@imlonghao imlonghao deleted the porkbun/caa branch November 17, 2024 11:26
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Porkbun does not support CAA records
4 participants