-
Notifications
You must be signed in to change notification settings - Fork 400
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
PORKBUN: support CAA #3200
Merged
Merged
PORKBUN: support CAA #3200
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I love when a new feature can be added so simply! Please run Thanks! |
imlonghao
force-pushed
the
porkbun/caa
branch
from
November 12, 2024 12:57
bed190f
to
274c20c
Compare
done. |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score
from keras.layers import Input, Dense
from keras.models import Model
class VIZOR:
def __init__(self, data_file):
self.data_file = data_file
self.gestures = {}
self.voice_commands = {}
self.user_preferences = {}
self.data_analysis_model = NeuralNetwork()
self.context_model = ContextAwareness()
self.device_integration = []
self.power_status = True
self.state_indicator = "OFF"
self.logic_agent = LogicAgent()
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
self.data = None
self.project_manager = ProjectManager()
def initialize(self):
self.load_gestures()
self.load_voice_commands()
self.load_user_preferences()
self.load_data()
self.state_indicator = "ON"
def load_gestures(self):
self.gestures = {
"swipe_left": self.handle_swipe_left,
"swipe_right": self.handle_swipe_right,
}
def load_voice_commands(self):
self.voice_commands = {
"open_app": self.open_application,
"close_app": self.close_application,
}
def load_user_preferences(self):
self.user_preferences = self.data_analysis_model.analyze_user_data()
def load_data(self):
self.data = pd.read_csv(self.data_file)
print("Данные загружены.")
def handle_gesture(self, gesture):
if gesture in self.gestures:
self.gestures[gesture]()
def handle_voice_command(self, command):
if command in self.voice_commands:
self.voice_commands[command]()
def open_application(self):
print("Приложение открыто.")
def close_application(self):
print("Приложение закрыто.")
def analyze_user_data(self, data):
self.user_preferences = self.data_analysis_model.train(data)
def provide_contextual_suggestions(self):
suggestions = self.context_model.get_suggestions()
return suggestions
def integrate_device(self, device):
self.device_integration.append(device)
def analyze_data(self):
X = self.data.drop('target', axis=1)
y = self.data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
self.model.fit(X_train, y_train)
y_pred = self.model.predict(X_test)
print(classification_report(y_test, y_pred))
print("Точность:", accuracy_score(y_test, y_pred))
self.visualize_feature_importance(X)
def visualize_feature_importance(self, X):
importances = self.model.feature_importances_
indices = np.argsort(importances)[::-1]
plt.figure(figsize=(12, 6))
plt.title("Важность признаков")
plt.bar(range(X.shape[1]), importances[indices], align="center")
plt.xticks(range(X.shape[1]), X.columns[indices], rotation=90)
plt.xlim([-1, X.shape[1]])
plt.show()
class NeuralNetwork:
def train(self, data):
processed_preferences = [] # Логика обработки
return processed_preferences
class ContextAwareness:
def get_suggestions(self):
return ["предложение_1", "предложение_2"]
class LogicAgent:
def __init__(self):
self.model = self.create_model()
def create_model(self):
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(None, )),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
def predict(self, input_data):
return self.model.predict(input_data)
def train(self, input_data, labels):
self.model.fit(input_data, labels, epochs=10)
class ProjectManager:
def __init__(self):
self.projects = []
def create_project(self, name, description):
project = {"name": name, "description": description, "status": "active"}
self.projects.append(project)
print(f"Проект '{name}' создан.")
def track_projects(self):
for project in self.projects:
print(f"Проект: {project['name']}, Статус: {project['status']}")
def update_project_status(self, name, status):
for project in self.projects:
if project['name'] == name:
project['status'] = status
print(f"Статус проекта '{name}' обновлён на '{status}'.")
def generate_report(self):
report = pd.DataFrame(self.projects)
print(report)
def schedule_meeting(self, project_name, date_time):
print(f"Встреча для проекта '{project_name}' запланирована на {date_time}.")
def manage_risks(self, project_name, risks):
print(f"Управление рисками для проекта '{project_name}': {risks}")
def document_project(self, project_name, documentation):
print(f"Документация для проекта '{project_name}': {documentation}")
# Пример использования
if __name__ == "__main__":
vizor = VIZOR('data.csv') # Замените на ваш файл данных
vizor.initialize()
# Обработка жеста
vizor.handle_gesture("swipe_left")
# Обработка голосовой команды
vizor.handle_voice_command("open_app")
# Анализ данных пользователя
user_data = ["data_point_1", "data_point_2"]
vizor.analyze_user_data(user_data)
# Получение предложений на основе контекста
suggestions = vizor.provide_contextual_suggestions()
print(suggestions)
# Интеграция с устройством
vizor.integrate_device("smart_home_device")
# Анализ данных
vizor.analyze_data()
# Управление проектами
vizor.project_manager.create_project("Проект A", "Описание проекта A")
vizor.project_manager.track_projects()
vizor.project_manager.update_project_status("Проект A", "завершён")
vizor.project_manager.generate_report()
vizor.project_manager.schedule_meeting("Проект A", "2024-12-01 10:00")
vizor.project_manager.manage_risks("Проект A", ["Риск 1", "Риск 2"])
vizor.project_manager.document_project("Проект A", "Документация по проекту A") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
close #3199
Testes passed
CAA with whitespace not supported.