Skip to content

SugarRuy/CVPR21_Transferred_Hash

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 

Repository files navigation

CVPR21_Transferred_Hash

A PyTorch Implementation of "You See What I Want You to See: Exploring Targeted Black-Box Transferability Attack for Hash-based Image Retrieval Systems" accepted by CVPR 2021.

Enviroments

You will need a CUDA device to run our code.

Basically you will need Python 3 at least and PyTorch 1.0+ to run this program. We suggest to install them with conda.

Dataset

ImageNet

We use a subset that includes 10% of all classes of the ImageNet following HashNet's implementation, which contains only 100 class. You may download them via thuml's link.

Remember to modify the path in files in ./HashNet/pytorch/data/imagenet/ directory.

Running

Preparing Models and Hash Code files.

We provide link for downloading all models and hash code files we have used. Here is the link. (This method is RECOMMENDED.)

The 'snapshot' folder should be placed under CVPR21_TransferredHash/AD_attack/HashNet/pytorch/ and the 'save_for_load' folder should be placed under CVPR21_TransferredHash/AD_attack/HashNet/pytorch/src/.

You could also do DIY training by:

python myTrain.py 

optional arguments:
  -h, --help            show this help message and exit
  --gpu_id GPU_ID       device id to run
  --dataset DATASET     dataset name
  --hash_bit HASH_BIT   number of hash code bits
  --net NET             base network type
  --prefix PREFIX       save path prefix
  --lr LR               learning rate
  --class_num CLASS_NUM

Then extract the hash code by:

python myExtractCodeLabel.py

optional arguments:
  -h, --help            show this help message and exit
  --gpu_id GPU_ID       device id to run
  --hash_bit HASH_BIT   number of hash code bits
  --snapshot_iter SNAPSHOT_ITER
                        number of iterations the model has
  --dataset DATASET     dataset name
  --net NET             base network type
  --batch_size BATCH_SIZE  batch size to load data

Generating Adv.

For NAG(ours method).

python myExpForPapers_nag.py --net1 ResNet152 

optional arguments:
  -h, --help            show this help message and exit
  --gpu_id GPU_ID       device id to run
  --dis_method DIS_METHOD
                        distance method
  --adv_method ADV_METHOD
                        adv method
  --var_lambda VAR_LAMBDA
                        lbd to balance loss1 and loss2
  --noise NOISE         noise distribution
  --noise_level NOISE_LEVEL
                        random_noise_level
  --net1 NET1           net1
  --net2 NET2           net2(NOT Necessary and Won't change to results!)
  --l_inf_max L_INF_MAX
                        l_inf_max
  --step_size STEP_SIZE
                        step_size

For PGD, DI, DI-Mom (iFGSM, iFGSMDI, miFGSMDI)

python myExpGetAdvVulnerable.py --gpu_id 0 --dis_method cW --adv_method iFGSM --net1 ResNet152 
python myExpGetAdvVulnerable.py --gpu_id 0 --dis_method cW --adv_method iFGSMDI --net1 ResNet152 
python myExpGetAdvVulnerable.py --gpu_id 0 --dis_method cW --adv_method miFGSMDI --net1 ResNet152 
    

Contacts and Issues

Yanru Xiao: yxiao002@odu.edu For any further issues, please oepn a new issue on github.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages