Skip to content

Commit

Permalink
BUG: nlargest/nsmallest gave wrong result (pandas-dev#22752) (pandas-…
Browse files Browse the repository at this point in the history
  • Loading branch information
troels authored and victor committed Sep 30, 2018
1 parent 6d3ea39 commit 11928f0
Show file tree
Hide file tree
Showing 4 changed files with 65 additions and 24 deletions.
13 changes: 10 additions & 3 deletions asv_bench/benchmarks/frame_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -505,14 +505,21 @@ class NSort(object):
param_names = ['keep']

def setup(self, keep):
self.df = DataFrame(np.random.randn(1000, 3), columns=list('ABC'))
self.df = DataFrame(np.random.randn(100000, 3),
columns=list('ABC'))

def time_nlargest(self, keep):
def time_nlargest_one_column(self, keep):
self.df.nlargest(100, 'A', keep=keep)

def time_nsmallest(self, keep):
def time_nlargest_two_columns(self, keep):
self.df.nlargest(100, ['A', 'B'], keep=keep)

def time_nsmallest_one_column(self, keep):
self.df.nsmallest(100, 'A', keep=keep)

def time_nsmallest_two_columns(self, keep):
self.df.nsmallest(100, ['A', 'B'], keep=keep)


class Describe(object):

Expand Down
1 change: 1 addition & 0 deletions doc/source/whatsnew/v0.24.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -819,6 +819,7 @@ Other
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now takes a ``text_color_threshold`` parameter to automatically lighten the text color based on the luminance of the background color. This improves readability with dark background colors without the need to limit the background colormap range. (:issue:`21258`)
- Require at least 0.28.2 version of ``cython`` to support read-only memoryviews (:issue:`21688`)
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` (:issue:`15204`)
- :meth:`DataFrame.nlargest` and :meth:`DataFrame.nsmallest` now returns the correct n values when keep != 'all' also when tied on the first columns (:issue:`22752`)
- :meth:`~pandas.io.formats.style.Styler.bar` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` and setting clipping range with ``vmin`` and ``vmax`` (:issue:`21548` and :issue:`21526`). ``NaN`` values are also handled properly.
- Logical operations ``&, |, ^`` between :class:`Series` and :class:`Index` will no longer raise ``ValueError`` (:issue:`22092`)
-
57 changes: 36 additions & 21 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1214,41 +1214,56 @@ def get_indexer(current_indexer, other_indexer):
indexer = Int64Index([])

for i, column in enumerate(columns):

# For each column we apply method to cur_frame[column].
# If it is the last column in columns, or if the values
# returned are unique in frame[column] we save this index
# and break
# Otherwise we must save the index of the non duplicated values
# and set the next cur_frame to cur_frame filtered on all
# duplcicated values (#GH15297)
# If it's the last column or if we have the number of
# results desired we are done.
# Otherwise there are duplicates of the largest/smallest
# value and we need to look at the rest of the columns
# to determine which of the rows with the largest/smallest
# value in the column to keep.
series = cur_frame[column]
values = getattr(series, method)(cur_n, keep=self.keep)
is_last_column = len(columns) - 1 == i
if is_last_column or values.nunique() == series.isin(values).sum():
values = getattr(series, method)(
cur_n,
keep=self.keep if is_last_column else 'all')

# Last column in columns or values are unique in
# series => values
# is all that matters
if is_last_column or len(values) <= cur_n:
indexer = get_indexer(indexer, values.index)
break

duplicated_filter = series.duplicated(keep=False)
duplicated = values[duplicated_filter]
non_duplicated = values[~duplicated_filter]
indexer = get_indexer(indexer, non_duplicated.index)
# Now find all values which are equal to
# the (nsmallest: largest)/(nlarrgest: smallest)
# from our series.
border_value = values == values[values.index[-1]]

# Some of these values are among the top-n
# some aren't.
unsafe_values = values[border_value]

# These values are definitely among the top-n
safe_values = values[~border_value]
indexer = get_indexer(indexer, safe_values.index)

# Must set cur frame to include all duplicated values
# to consider for the next column, we also can reduce
# cur_n by the current length of the indexer
cur_frame = cur_frame[series.isin(duplicated)]
# Go on and separate the unsafe_values on the remaining
# columns.
cur_frame = cur_frame.loc[unsafe_values.index]
cur_n = n - len(indexer)

frame = frame.take(indexer)

# Restore the index on frame
frame.index = original_index.take(indexer)
return frame

# If there is only one column, the frame is already sorted.
if len(columns) == 1:
return frame

ascending = method == 'nsmallest'

return frame.sort_values(
columns,
ascending=ascending,
kind='mergesort')


# ------- ## ---- #
Expand Down
18 changes: 18 additions & 0 deletions pandas/tests/frame/test_analytics.py
Original file line number Diff line number Diff line change
Expand Up @@ -2095,6 +2095,24 @@ def test_n_all_dtypes(self, df_main_dtypes):
df.nsmallest(2, list(set(df) - {'category_string', 'string'}))
df.nlargest(2, list(set(df) - {'category_string', 'string'}))

@pytest.mark.parametrize('method,expected', [
('nlargest',
pd.DataFrame({'a': [2, 2, 2, 1], 'b': [3, 2, 1, 3]},
index=[2, 1, 0, 3])),
('nsmallest',
pd.DataFrame({'a': [1, 1, 1, 2], 'b': [1, 2, 3, 1]},
index=[5, 4, 3, 0]))])
def test_duplicates_on_starter_columns(self, method, expected):
# regression test for #22752

df = pd.DataFrame({
'a': [2, 2, 2, 1, 1, 1],
'b': [1, 2, 3, 3, 2, 1]
})

result = getattr(df, method)(4, columns=['a', 'b'])
tm.assert_frame_equal(result, expected)

def test_n_identical_values(self):
# GH15297
df = pd.DataFrame({'a': [1] * 5, 'b': [1, 2, 3, 4, 5]})
Expand Down

0 comments on commit 11928f0

Please sign in to comment.