- ClearRealityV1 (4X) by Kim2091
- SPANkendata (4X) by terrainer
- 2x-span-anime-pretrain (2X) by Kim2091
- 2xHFA2kSpan (2x) by Phhofm
- 4x-Nomos8k-span-otf-strong (4x) by Helaman
- 4x-Nomos8k-span-otf-medium (4x) by Helaman
- 4x-Nomos8k-span-otf-weak (4x) by Helaman
- AniSD models (2x) by SiroSky
ncnn implementation of SPAN, Swift Parameter-free Attention Network for Efficient Super-Resolution
span-ncnn-vulkan uses ncnn project as the universal neural network inference framework.
Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia GPU
https://github.com/tntwise/span-ncnn-vulkan/releases
This package includes all the binaries and models required. It is portable, so no CUDA or PyTorch runtime environment is needed :)
SPAN (Swift Parameter-free Attention Network for Efficient Super-Resolution)
https://github.com/hongyuanyu/SPAN
Cheng Wan Hongyuan Yu Zhiqi Li Yihang Chen Yajun Zou Yuqing Liu Xuanwu Yin Kunlong Zu
Input one image, output one upscaled frame image.
./span-ncnn-vulkan -m models/ -n spanx4_ch48 -s 4 -i 0.jpg -o 01.jpg
./span-ncnn-vulkan -m models/ -n spanx4_ch48 -s 4 -i input_frames/ -o output_frames/
Example below runs on CPU, Discrete GPU, and Integrated GPU all at the same time. Uses 2 threads for image decoding, 4 threads for one CPU worker, 4 threads for another CPU worker, 2 threads for discrete GPU, 1 thread for integrated GPU, and 4 threads for image encoding.
./span-ncnn-vulkan -m models/ -n spanx4_ch48 -s 4 -i input_frames/ -o output_frames/ -g -1,-1,0,1 -j 2:4,4,2,1:4
mkdir input_frames
mkdir output_frames
# find the source fps and format with ffprobe, for example 24fps, AAC
ffprobe input.mp4
# extract audio
ffmpeg -i input.mp4 -vn -acodec copy audio.m4a
# decode all frames
ffmpeg -i input.mp4 input_frames/frame_%08d.png
# upscale 4x resolution
./span-ncnn-vulkan -m models/ -n spanx4_ch48 -s 4 -i input_frames -o output_frames
# encode interpolated frames in 48fps with audio
ffmpeg -framerate 24 -i output_frames/%08d.png -i audio.m4a -c:a copy -crf 20 -c:v libx264 -pix_fmt yuv420p output.mp4
Usage: span-ncnn-vulkan -i infile -o outfile [options]...
-h show this help
-i input-path input image path (jpg/png/webp) or directory
-o output-path output image path (jpg/png/webp) or directory
-s scale upscale ratio (can be 2, 3, 4. default=4)
-t tile-size tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
-m model-path folder path to the pre-trained models. default=models
-n model-name model name (default=spanx4_ch48, can be spanx4_ch48 | spanx2_ch52 | spanx4_ch48 | spanx4_ch52)
-g gpu-id gpu device to use (default=auto) can be 0,1,2 for multi-gpu
-c cpu-only use only CPU for upscaling, instead of vulkan
-j load:proc:save thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
-x enable tta mode
-f format output image format (jpg/png/webp, default=ext/png)
-v verbose output
input-path
andoutput-path
accept file directoryload:proc:save
= thread count for the three stages (image decoding + upscaling + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.pattern-format
= the filename pattern and format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encodedscale
= upscale multiplier, must match model.
If you encounter a crash or error, try upgrading your GPU driver:
- Intel: https://downloadcenter.intel.com/product/80939/Graphics-Drivers
- AMD: https://www.amd.com/en/support
- NVIDIA: https://www.nvidia.com/Download/index.aspx
- Download and setup the Vulkan SDK from https://vulkan.lunarg.com/
- For Linux distributions, you can either get the essential build requirements from package manager
dnf install vulkan-headers vulkan-loader-devel
apt-get install libvulkan-dev
pacman -S vulkan-headers vulkan-icd-loader
- Clone this project with all submodules
git clone https://github.com/tntwise/span-ncnn-vulkan.git
cd span-ncnn-vulkan
git submodule update --init --recursive
- Build with CMake
- You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS
mkdir build
cd build
cmake ../src
cmake --build . -j 4
model | upstream version |
---|---|
spanx2_ch48 | spanx2_ch48 |
spanx2_ch52 | spanx2_ch52 |
spanx4_ch48 | spanx4_ch48 |
spanx4_ch52 | spanx4_ch52 |
./span-ncnn-vulkan -m models/ -n spanx4_ch48 -s 4 -i 0.png -o out.png
./span-ncnn-vulkan -m custom_models/ -n 2xHFA2kSPAN_27k -s 2 -i 0.png -o 2xHFA2kSPAN.png
- https://github.com/Tencent/ncnn for fast neural network inference on ALL PLATFORMS
- https://github.com/webmproject/libwebp for encoding and decoding Webp images on ALL PLATFORMS
- https://github.com/nothings/stb for decoding and encoding image on Linux / MacOS
- https://github.com/tronkko/dirent for listing files in directory on Windows