-
Notifications
You must be signed in to change notification settings - Fork 143
Vision benchmark
zhezhaoa edited this page Dec 11, 2022
·
3 revisions
Here is a short summary of our solution on Vision benchmark. One can obtain the pre-trained models used below from here.
The example of fine-tuning and doing inference on CIFAR10 dataset with ViT-base-patch16-224-in21k:
python3 finetune/run_image_classifier.py --pretrained_model_path models/vit_base_patch16_224_model.bin \
--tokenizer virtual \
--config_path models/vit/base-16-224_config.json \
--train_path datasets/cifar10/train.tsv \
--dev_path datasets/cifar10/test.tsv \
--output_model_path models/image_classifier_model.bin \
--epochs_num 3 --batch_size 64
python3 inference/run_image_classifier_infer.py --load_model_path models/image_classifier_model.bin \
--tokenizer virtual \
--config_path models/vit/base-16-224_config.json \
--test_path datasets/cifar10/test.tsv \
--prediction_path datasets/cifar10/prediction.tsv \
--labels_num 10
The example of fine-tuning and doing inference on CIFAR10 dataset with ViT-large-patch16-224-in21k:
python3 finetune/run_image_classifier.py --pretrained_model_path models/vit_large_patch16_224_model.bin \
--tokenizer virtual \
--config_path models/vit/large-16-224_config.json \
--train_path datasets/cifar10/train.tsv \
--dev_path datasets/cifar10/test.tsv \
--output_model_path models/image_classifier_model.bin \
--epochs_num 3 --batch_size 64
python3 inference/run_image_classifier_infer.py --load_model_path models/image_classifier_model.bin \
--tokenizer virtual \
--config_path models/vit/large-16-224_config.json \
--test_path datasets/cifar10/test.tsv \
--prediction_path datasets/cifar10/prediction.tsv \
--labels_num 10
The example of fine-tuning and doing inference on CIFAR100 dataset with ViT-base-patch16-224-in21k:
python3 finetune/run_image_classifier.py --pretrained_model_path models/vit_base_patch16_224_model.bin \
--tokenizer virtual \
--config_path models/vit/base-16-224_config.json \
--train_path datasets/cifar100/train.tsv \
--dev_path datasets/cifar100/test.tsv \
--output_model_path models/image_classifier_model.bin \
--epochs_num 3 --batch_size 64
python3 inference/run_image_classifier_infer.py --load_model_path models/image_classifier_model.bin \
--tokenizer virtual \
--config_path models/vit/base-16-224_config.json \
--test_path datasets/cifar100/test.tsv \
--prediction_path datasets/cifar100/prediction.tsv \
--labels_num 100
The example of fine-tuning and doing inference on CIFAR10 dataset with ViT-large-patch16-224-in21k:
python3 finetune/run_image_classifier.py --pretrained_model_path models/vit_large_patch16_224_model.bin \
--tokenizer virtual \
--config_path models/vit/large-16-224_config.json \
--train_path datasets/cifar100/train.tsv \
--dev_path datasets/cifar100/test.tsv \
--output_model_path models/image_classifier_model.bin \
--epochs_num 3 --batch_size 64
python3 inference/run_image_classifier_infer.py --load_model_path models/image_classifier_model.bin \
--tokenizer virtual \
--config_path models/vit/large-16-224_config.json \
--test_path datasets/cifar100/test.tsv \
--prediction_path datasets/cifar100/prediction.tsv \
--labels_num 100