Skip to content

Commit

Permalink
Add translated document: glsl-extension.zh.md (#4818)
Browse files Browse the repository at this point in the history
  • Loading branch information
whyb committed Jul 2, 2023
1 parent 4b97730 commit 1e0d70a
Showing 1 changed file with 371 additions and 0 deletions.
371 changes: 371 additions & 0 deletions docs/developer-guide/glsl-extension.zh.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,371 @@
# ncnn GLSL 扩展

## 理由
不同的 GPU 支持不同的功能,有的支持 fp16 作为缓冲存储类型,有的支持 fp16 作为操作数变量,有的老 GPU 只支持 fp32。

当 GPU 支持 `VK_KHR_16bit_storage` 扩展时,为了尽量减少 GPU 的内存带宽消耗,我们会优先使用 fp16 作为存储类型。否则,我们使用 `packHalf2x16``unpackHalf2x16` 在 GLSL 4.2 中将 2 个 fp32 压缩为 uint,从而减少读写带宽。

同样,当 GPU 支持 `VK_KHR_shader_float16_int8` 扩展时,为了加快计算效率,我们会优先使用 fp16 作为运算操作数,这通常会使速度翻倍。否则,我们使用 fp32。

为了确保最广泛的兼容性,将编写以下用于声明描述符绑定和加载数据的代码

```c
#if NCNN_fp16_storage // GPU支持 16bit storage
layout (binding = 0) buffer blob { f16vec4 blob_data[]; };
#elif NCNN_fp16_packed // GPU支持 GLSL 4.2
layout (binding = 0) buffer blob { uvec2 blob_data[]; };
#else // GPU仅支持 fp32
layout (binding = 0) buffer blob { vec4 blob_data[]; };
#endif

void main()
{
const int i = int(gl_GlobalInvocationID.x);

#if NCNN_fp16_storage && NCNN_fp16_arithmetic // GPU支持 16bit storage 和 shader float16
f16vec4 x = blob_data[i];
#elif NCNN_fp16_storage // GPU支持 16bit storage 但不包含 shader float16
vec4 x = vec4(blob_data[i]);
#elif NCNN_fp16_packed && NCNN_fp16_arithmetic // GPU支持 GLSL 4.2 和 shader float16
f16vec4 x = f16vec4(unpackFloat2x16(blob_data[i].x), unpackFloat2x16(blob_data[i].y));
#elif NCNN_fp16_packed // GPU支持 GLSL 4.2
vec4 x = vec4(unpackHalf2x16(blob_data[i].x), unpackHalf2x16(blob_data[i].y));
#else // GPU仅支持 fp32
vec4 x = blob_data[i];
#endif
}
```

如您所见,仅声明缓冲区类型并读取值会消耗大量代码行,这是项目维护的噩梦。因此,ncnn 增加了更灵活的数据类型和辅助函数,以减小代码的大小并提高可读性,并且会根据 GPU 支持的功能级别自动扩展到最高效的实现。

上面的代码,通过使用 ncnn GLSL 扩展,可以简化为

```c
layout (binding = 0) buffer blob { sfpvec4 blob_data[]; };

void main()
{
const int i = int(gl_GlobalInvocationID.x);

afpvec4 x = buffer_ld4(blob_data, i);
}
```
ncnn GLSL 扩展为存储、计算、共享内存以及缓冲区和图像的加载、存储、转换函数提供了必要的数据类型。我们还提供了一些缓冲区和图像复制函数,以防止在使用 fp16 作为中间数据类型时丢失精度,并避免不必要的 `unpackHalf2x16` 和 `packHalf2x16` 配对。
# 编译GLSL的入口点
ncnn库中的 gpu.h 头文件公开了3个用于将 GLSL 代码编译为 Spir-V 二进制的API函数,它们支持 ncnn GLSL 扩展,这3个函数接受 opt switch 来控制 ncnn GLSL 扩展形式。前两个函数接受原始 GLSL 代码字符串作为参数,最后一个函数用于创建 ncnn 的已存在的内置着色器。
```cpp
namespace ncnn {
// 在线 Spir-V 编译器
NCNN_EXPORT int compile_spirv_module(const char* comp_string, const Option& opt, std::vector<uint32_t>& spirv);
NCNN_EXPORT int compile_spirv_module(const char* comp_data, int comp_data_size, const Option& opt, std::vector<uint32_t>& spirv);
NCNN_EXPORT int compile_spirv_module(int shader_type_index, const Option& opt, std::vector<uint32_t>& spirv);
} // namespace ncnn
```

## 直接编译ncnn扩展GLSL代码

您可以使用 ncnn GLSL 扩展编写着色器代码,使用 ncnn 函数编译为 Spir-V。编译后的产品是符合标准的 Spir-V 二进制文件,可以直接用于在 Vulkan API 中创建流水线对象

```cpp
static const char my_glsl_data[] = R"(
#version 450
#if NCNN_fp16_storage
#extension GL_EXT_shader_16bit_storage: require
#endif
#if NCNN_fp16_arithmetic
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
#endif
layout (binding = 0) readonly buffer a_blob { sfpvec4 a_blob_data[]; };
layout (binding = 1) writeonly buffer b_blob { sfpvec4 b_blob_data[]; };
void main()
{
const int i = int(gl_GlobalInvocationID.x);
afpvec4 v = buffer_ld4(a_blob_data, i);
v = v + 123;
buffer_st4(b_blob_data, i, v);
}
)";

Option opt;
// 您可以控制Vulkan扩展行为
// 当GPU支持16位存储的话
opt.use_fp16_storage = false;

std::vector<uint32_t> spirv;
ncnn::compile_spirv_module(my_glsl_data, sizeof(my_glsl_data) - 1, opt, spirv);

// 稍后再创建管道对象
// ncnn::Pipeline pipeline(vkdev);
// pipeline.set_local_size_xyz(64, 1, 1);
// pipeline.create(spirv.data(), spirv.size() * 4, specializations);
```
## ncnn内置着色器
ncnn内部的着色器索引在标头中公开,如果需要可以使用 `layer_shader_type.h`
```cpp
#include "layer_shader_type.h"
int shader_type_index = LayerShaderType::convert_ycbcr;
Option opt;
std::vector<uint32_t> spirv;
int retc = compile_spirv_module(shader_type_index, opt, spirv);
```

# 数据类型

## 存储类型(storage type)

在描述符绑定中声明缓冲区数据布局

```c
layout (binding = 0) buffer top_blob { sfpvec4 top_blob_data[]; };
```
|存储类型|fp32|fp16p|fp16s|
|---|---|---|---|
|sfp|float|float|float16_t|
|sfpvec2|vec2|uint|f16vec2|
|sfpvec4|vec4|uvec2|f16vec4|
|sfpvec8|mat2x4|uvec4|f16mat2x4|
## 算术类型(arithmetic type)
在 GLSL 代码中声明局部变量
```c
void main()
{
afpvec4 v = a * b;
}
```

|算术类型|fp32|fp16a|
|---|---|---|
|afp|float|float16_t|
|afpvec2|vec2|f16vec2|
|afpvec4|vec4|f16vec4|
|afpvec8|mat2x4|f16mat2x4|

## 本地类型(local type)

在共享本地内存中声明变量

```c
shared lfp tmp_a[8][4][2];
```

|local type|fp32|fp16p / fp16s|fp16s + fp16a|
|---|---|---|---|
|lfp|float|float|float16_t|
|lfpvec4|vec4|uvec2|f16vec4|

## 图像格式类型(image format type)和精度类型(precision hint type)

在描述符绑定中声明图像格式

```c
layout (binding = 0) uniform unfp sampler3D bottom_blob_3d;
layout (binding = 1, imfmtc4) writeonly uniform unfp image3D top_blob_3d;
```
|格式类型|fp32|fp16p|fp16s|
|---|---|---|---|
|imfmt1|r32f|f32f|r16f|
|imfmt4|rgba32f|rgba16f|rgba16f|
|精度类型|fp32|fp16p|fp16s|
|---|---|---|---|
|unfp|highp|mediump|mediump|
# 缓冲区函数(buffer functions)
- 从 src[offset] 加载已经确定类型的值
```c
afp buffer_ld1(sfp src, int offset);
afpvec2 buffer_ld2(sfpvec2 src, int offset);
afpvec4 buffer_ld4(sfpvec4 src, int offset);
afpvec8 buffer_ld8(sfpvec8 src, int offset);
```

- 将已确定类型的值存储到 dst[偏移量]

```c
void buffer_st1(sfp dst, int offset, afp v);
void buffer_st2(sfpvec2 dst, int offset, afpvec2 v);
void buffer_st4(sfpvec4 dst, int offset, afpvec4 v);
void buffer_st8(sfpvec8 dst, int offset, afpvec8 v);
```
- 从已确定类型 src[src_offset] 的值拷贝到 dst[dst_offset]
```c
void buffer_cp1(sfp dst, int dst_offset, sfp src, int src_offset);
void buffer_cp2(sfpvec2 dst, int dst_offset, sfpvec2 src, int src_offset);
void buffer_cp4(sfpvec4 dst, int dst_offset, sfpvec4 src, int src_offset);
void buffer_cp8(sfpvec4 dst, int dst_offset, sfpvec4 src, int src_offset);
```

- 从 src[src_offsets[0],src_offsets[1],...] 的值拷贝并打包到 dst[dst_offset]

```c
void buffer_cp1to4(sfpvec4 dst, int dst_offset, sfp src, ivec4 src_offsets);
void buffer_cp1to8(sfpvec8 dst, int dst_offset, sfp src, ivec4 src_offsets_0, ivec4 src_offsets_1);
void buffer_cp4to8(sfpvec8 dst, int dst_offset, sfpvec4 src, ivec2 src_offsets);
```
- 从 src[src_offset] 的值拷贝并解包到 dst[dst_offsets[0],dst_offsets[1],...]
```c
void buffer_cp4to1(sfp dst, ivec4 dst_offsets, sfpvec4 src, int src_offset);
void buffer_cp8to1(sfp dst, ivec4 dst_offsets_0, ivec4 dst_offsets_1, sfpvec8 src, int src_offset);
void buffer_cp8to4(sfpvec4 dst, ivec2 dst_offsets, sfpvec8 src, int src_offset);
```

# 图像函数

- 根据 sampler?D 图像(透过 src 和 pos) 来加载数据

```c
afp image1d_ld1(sampler1D src, float pos);
afp image2d_ld1(sampler2D src, vec2 pos);
afp image3d_ld1(sampler3D src, vec3 pos);
afpvec4 image1d_ld4(sampler1D src, float pos);
afpvec4 image2d_ld4(sampler2D src, vec2 pos);
afpvec4 image3d_ld4(sampler3D src, vec3 pos);
afpvec8 image1d_ld8(sampler1D src, float pos);
afpvec8 image2d_ld8(sampler2D src, vec2 pos);
afpvec8 image3d_ld8(sampler3D src, vec3 pos);
```
- 存储确定类型的值到 image?D (透过 dst 和 pos 参数)
```c
void image1d_st1(image1D dst, int pos, afp v);
void image2d_st1(image2D dst, ivec2 pos, afp v);
void image3d_st1(image3D dst, ivec3 pos, afp v);
void image1d_st4(image1D dst, int pos, afpvec4 v);
void image2d_st4(image2D dst, ivec2 pos, afpvec4 v);
void image3d_st4(image3D dst, ivec3 pos, afpvec4 v);
void image1d_st8(image1D dst, int pos, afpvec8 v);
void image2d_st8(image2D dst, ivec2 pos, afpvec8 v);
void image3d_st8(image3D dst, ivec3 pos, afpvec8 v);
```

- 把 sampler?D 的值的内容(透过 src 和 src_pos 参数) 拷贝到 image?D (透过 dst 和 dst_pos 参数)

```c
void image1d_cp1(image1D dst, int dst_pos, sampler1D src, float src_pos);
void image2d_cp1(image2D dst, ivec2 dst_pos, sampler2D src, vec2 src_pos);
void image3d_cp1(image3D dst, ivec3 dst_pos, sampler3D src, vec3 src_pos);
void image1d_cp4(image1D dst, int dst_pos, sampler1D src, float src_pos);
void image2d_cp4(image2D dst, ivec2 dst_pos, sampler2D src, vec2 src_pos);
void image3d_cp4(image3D dst, ivec3 dst_pos, sampler3D src, vec3 src_pos);
void image1d_cp8(image1D dst, int dst_pos, sampler1D src, float src_pos);
void image2d_cp8(image2D dst, ivec2 dst_pos, sampler2D src, vec2 src_pos);
void image3d_cp8(image3D dst, ivec3 dst_pos, sampler3D src, vec3 src_pos);
```
注意:由于图像是不透明的数据结构,因此不提供复制和打包/解包功能。要实现此操作,您需要先加载,然后再存储。
# 本地数据转换函数
- 存储缓冲区转换到本地内存
```c
lfp sfp2lfp(sfp v);
lfpvec4 sfp2lfpvec4(sfpvec4 v);
```

- 本地内存转换到局部变量

```c
afp lfp2afp(lfp v);
afpvec4 lfp2afpvec4(lfpvec4 v);
```
注意:本地内存的常见用法是先从全局内存中读取,存储在本地内存中,然后再从本地内存中读取局部变量以供后续使用。因此,此处仅提供存储类型到本地类型和本地类型到算术类型的转换函数。
# 杂项函数
- 更推荐使用专业化常量(specialization constants),而不是推动常量(push constants)
```c
T psc(T x)
```

`专用常量``推送常量` 部分中声明相同的变量,然后在专用常量给定非零时 `psc(x)` 将成为编译时常量,否则将通过推送常量动态。这通常用于张量形状特化。我们通常可以解析所有形状信息,并使它们成为编译时常量,以实现让着色器得到更积极的优化。

```c
layout (constant_id = 0) const int size = 0;

layout (push_constant) uniform parameter
{
int size;
} p;

void main()
{
const int s = psc(size);
}
```
# 平台宏定义
判断当前平台是否为 moltenvk,以启用对于某些特定于平台的解决方法
```c
#if NCNN_moltenvk
// 启用moltenvk的解决方法
#endif
```

# 条件宏定义与option的关系

仅当用户启用某些选项时才启用 GLSL 扩展

```c
#if NCNN_fp16_storage
#extension GL_EXT_shader_16bit_storage: require
#endif
#if NCNN_fp16_arithmetic
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
#endif
```

声明图像或缓冲区的描述符绑定

```c
#if NCNN_image_shader
layout (binding = 0) uniform unfp sampler3D bottom_blob_3d;
#else
layout (binding = 0) readonly buffer bottom_blob { sfpvec4 bottom_blob_data[]; };
#endif
```

|宏定义|option中所定义的变量|
|---|---|
|NCNN_fp16_packed|opt.use_fp16_packed|
|NCNN_fp16_storage|opt.use_fp16_storage|
|NCNN_fp16_arithmetic|opt.use_fp16_arithmetic|
|NCNN_int8_packed|opt.use_int8_packed|
|NCNN_int8_storage|opt.use_int8_storage|
|NCNN_int8_arithmetic|opt.use_int8_arithmetic|
|NCNN_image_shader|opt.use_image_storage|
|NCNN_shader_local_memory|opt.use_shader_local_memory|

0 comments on commit 1e0d70a

Please sign in to comment.