First, install Pytorch 1.13.1 (or later) and torchvision, as well as some additional dependencies
$ conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
$ git clone https://github.com/ganyk/BEBR.git
$ pip install -r requirements
Pre-computed hash features, recurrent binary features and float features are provided for evaluation.
# run evaluation on hash features
$ python tools/eval.py --image_feat dataset/hash/feat_image.npy --txt_feat dataset/hash/feat_txt.npy
# float features
$ python tools/eval.py --image_feat dataset/float_finetune/feat_image.npy --txt_feat dataset/float_finetune/feat_txt.npy
# recurrent binary features
$ python tools/eval.py --image_feat dataset/bebr/feat_image.npy --txt_feat dataset/bebr/feat_txt.npy
The results should be consistent with those in the paper:
Embedding | Bits | Recall@1 | Recall@5 | Recall@10 |
---|---|---|---|---|
hash | 1024 | 0.348 | 0.632 | 0.730 |
bebr | 1024 | 0.360 | 0.646 | 0.751 |
float | 16384 | 0.361 | 0.649 | 0.744 |
- Download COCO datasets and uncompress them
$ mkdir dataset/coco & cd dataset/coco
$ wget http://images.cocodataset.org/zips/train2017.zip
$ wget http://images.cocodataset.org/zips/val2017.zip
$ wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip train2017.zip & unzip val2017.zip & unzip annotations_trainval2017.zip
- Use clip RN101 model to generate float features which will be used as input to train binary model
$ python tools/gen_clip_feat_train.py
$ python tools/gen_clip_feat_eval.py
# train hash model
$ sh train_local.sh configs/hash.yaml
# train bebr model
$ sh train_local.sh configs/bebr.yaml
The training process of binary model can be seened as a finetune process. For fair comparison, we also finetune the clip features using MLPs whose input and output are both float features.
$ sh train_local.sh configs/float.yaml