Skip to content
/ UMT Public

UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

License

Notifications You must be signed in to change notification settings

TencentARC/UMT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unified Multi-modal Transformers

DOI arXiv License

This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection by Ye Liu, Siyuan Li, Yang Wu, Chang Wen Chen, Ying Shan, and Xiaohu Qie, which has been accepted by CVPR 2022.

Installation

Please refer to the following environmental settings that we use. You may install these packages by yourself if you meet any problem during automatic installation.

  • CUDA 11.5.0
  • CUDNN 8.3.2.44
  • Python 3.10.0
  • PyTorch 1.11.0
  • NNCore 0.3.6

Install from source

  1. Clone the repository from GitHub.
git clone https://github.com/TencentARC/UMT.git
cd UMT
  1. Install dependencies.
pip install -r requirements.txt

Getting Started

Download and prepare the datasets

  1. Download and extract the datasets.
  1. Prepare the files in the following structure.
UMT
├── configs
├── datasets
├── models
├── tools
├── data
│   ├── qvhighlights
│   │   ├── *features
│   │   ├── highlight_{train,val,test}_release.jsonl
│   │   └── subs_train.jsonl
│   ├── charades
│   │   ├── *features
│   │   └── charades_sta_{train,test}.txt
│   ├── youtube
│   │   ├── *features
│   │   └── youtube_anno.json
│   └── tvsum
│       ├── *features
│       └── tvsum_anno.json
├── README.md
├── setup.cfg
└── ···

Train a model

Run the following command to train a model using a specified config.

# Single GPU
python tools/launch.py ${path-to-config}

# Multiple GPUs
torchrun --nproc_per_node=${num-gpus} tools/launch.py ${path-to-config}

Test a model and evaluate results

Run the following command to test a model and evaluate results.

python tools/launch.py ${path-to-config} --checkpoint ${path-to-checkpoint} --eval

Pre-train with ASR captions on QVHighlights

Run the following command to pre-train a model using ASR captions on QVHighlights.

torchrun --nproc_per_node=4 tools/launch.py configs/qvhighlights/umt_base_pretrain_100e_asr.py

Model Zoo

We provide multiple pre-trained models and training logs here. All the models are trained with a single NVIDIA Tesla V100-FHHL-16GB GPU and are evaluated using the default metrics of the datasets.

Dataset Model Type MR mAP HD mAP Download
R1@0.5 R1@0.7 R5@0.5 R5@0.7
QVHighlights UMT-B 38.59 39.85 model | metrics
UMT-B w/ PT 39.26 40.10 model | metrics
Charades-STA UMT-B V + A 48.31 29.25 88.79 56.08 model | metrics
UMT-B V + O 49.35 26.16 89.41 54.95 model | metrics
YouTube
Highlights
UMT-S Dog 65.93 model | metrics
UMT-S Gymnastics 75.20 model | metrics
UMT-S Parkour 81.64 model | metrics
UMT-S Skating 71.81 model | metrics
UMT-S Skiing 72.27 model | metrics
UMT-S Surfing 82.71 model | metrics
TVSum UMT-S VT 87.54 model | metrics
UMT-S VU 81.51 model | metrics
UMT-S GA 88.22 model | metrics
UMT-S MS 78.81 model | metrics
UMT-S PK 81.42 model | metrics
UMT-S PR 86.96 model | metrics
UMT-S FM 75.96 model | metrics
UMT-S BK 86.89 model | metrics
UMT-S BT 84.42 model | metrics
UMT-S DS 79.63 model | metrics

Here, w/ PT means initializing the model using pre-trained weights on ASR captions. V, A, and O indicate video, audio, and optical flow, respectively.

Citation

If you find this project useful for your research, please kindly cite our paper.

@inproceedings{liu2022umt,
  title={UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection},
  author={Liu, Ye and Li, Siyuan and Wu, Yang and Chen, Chang Wen and Shan, Ying and Qie, Xiaohu},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={3042--3051},
  year={2022}
}

About

UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages