Skip to content

Commit

Permalink
Add 'hallucinations' filter oobabooga#326
Browse files Browse the repository at this point in the history
This breaks the API since a new parameter has been added.
It should be a one-line fix. See api-example.py.
  • Loading branch information
oobabooga committed Mar 15, 2023
1 parent 128d18e commit 9d6a625
Show file tree
Hide file tree
Showing 5 changed files with 25 additions and 18 deletions.
2 changes: 2 additions & 0 deletions api-example-stream.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ async def run(context):
'top_p': 0.9,
'typical_p': 1,
'repetition_penalty': 1.05,
'encoder_repetition_penalty': 1.0,
'top_k': 0,
'min_length': 0,
'no_repeat_ngram_size': 0,
Expand Down Expand Up @@ -59,6 +60,7 @@ async def run(context):
params['top_p'],
params['typical_p'],
params['repetition_penalty'],
params['encoder_repetition_penalty'],
params['top_k'],
params['min_length'],
params['no_repeat_ngram_size'],
Expand Down
2 changes: 2 additions & 0 deletions api-example.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
'top_p': 0.9,
'typical_p': 1,
'repetition_penalty': 1.05,
'encoder_repetition_penalty': 1.0,
'top_k': 0,
'min_length': 0,
'no_repeat_ngram_size': 0,
Expand All @@ -45,6 +46,7 @@
params['top_p'],
params['typical_p'],
params['repetition_penalty'],
params['encoder_repetition_penalty'],
params['top_k'],
params['min_length'],
params['no_repeat_ngram_size'],
Expand Down
16 changes: 8 additions & 8 deletions modules/chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def extract_message_from_reply(question, reply, name1, name2, check, impersonate
def stop_everything_event():
shared.stop_everything = True

def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
shared.stop_everything = False
just_started = True
eos_token = '\n' if check else None
Expand Down Expand Up @@ -133,7 +133,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
# Generate
reply = ''
for i in range(chat_generation_attempts):
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):

# Extracting the reply
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check)
Expand All @@ -160,7 +160,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical

yield shared.history['visible']

def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
eos_token = '\n' if check else None

if 'pygmalion' in shared.model_name.lower():
Expand All @@ -172,26 +172,26 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
# Yield *Is typing...*
yield shared.processing_message
for i in range(chat_generation_attempts):
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
yield reply
if next_character_found:
break
yield reply

def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
yield generate_chat_html(_history, name1, name2, shared.character)

def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
else:
last_visible = shared.history['visible'].pop()
last_internal = shared.history['internal'].pop()
# Yield '*Is typing...*'
yield generate_chat_output(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, shared.character)
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
if shared.args.cai_chat:
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
else:
Expand Down
3 changes: 2 additions & 1 deletion modules/text_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ def clear_torch_cache():
if not shared.args.cpu:
torch.cuda.empty_cache()

def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
clear_torch_cache()
t0 = time.time()

Expand Down Expand Up @@ -143,6 +143,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
"top_p": top_p,
"typical_p": typical_p,
"repetition_penalty": repetition_penalty,
"encoder_repetition_penalty": encoder_repetition_penalty,
"top_k": top_k,
"min_length": min_length if shared.args.no_stream else 0,
"no_repeat_ngram_size": no_repeat_ngram_size,
Expand Down
20 changes: 11 additions & 9 deletions server.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def load_preset_values(preset_menu, return_dict=False):
'top_p': 1,
'typical_p': 1,
'repetition_penalty': 1,
'encoder_repetition_penalty': 1,
'top_k': 50,
'num_beams': 1,
'penalty_alpha': 0,
Expand All @@ -86,7 +87,7 @@ def load_preset_values(preset_menu, return_dict=False):
if return_dict:
return generate_params
else:
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['encoder_repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']

def upload_soft_prompt(file):
with zipfile.ZipFile(io.BytesIO(file)) as zf:
Expand Down Expand Up @@ -117,14 +118,15 @@ def create_settings_menus(default_preset):
with gr.Row():
with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 2.99, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p')
with gr.Column():
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p')
with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'],step=0.01,label='encoder_repetition_penalty')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream)
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')

gr.Markdown('Contrastive search:')
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha')
Expand All @@ -147,7 +149,7 @@ def create_settings_menus(default_preset):
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])

shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']])
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['encoder_repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']])
shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])

Expand Down Expand Up @@ -262,7 +264,7 @@ def create_settings_menus(default_preset):
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
create_settings_menus(default_preset)

shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
if shared.args.extensions is not None:
with gr.Tab('Extensions'):
extensions_module.create_extensions_block()
Expand Down Expand Up @@ -329,7 +331,7 @@ def create_settings_menus(default_preset):
if shared.args.extensions is not None:
extensions_module.create_extensions_block()

shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
Expand Down Expand Up @@ -361,7 +363,7 @@ def create_settings_menus(default_preset):
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()

shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
Expand Down

0 comments on commit 9d6a625

Please sign in to comment.