This docs is helpful to reproduce our work MCDDPM, which has been accepted by MICCAI 2022. It includes the following parts:
- Dataset
- Preparation
- Experiments
We use the single-coil knee data of fastmri to evaluate our MCDDPM method. The dataset can be downloaded from https://fastmri.med.nyu.edu. The data was extracted to ../datasets/fastmri/
and includes two sub-directories, knee_singlecoil_train
and knee_singlecoil_test
. We split the dataset into two parts, pd
and pdfs
for different sequences. In our experiments, we consider the acceleration factors of 4 and 8.
Before experiments, we generate some lists which contain fastmri data information and save them as .pkl
files. They will be used for model training and test.
- for
pd
training
python utils/dataset_utils/gen_fastmri_data_info.py \
--data_dir ../datasets/fastmri/knee_singlecoil_train \
--data_info_dir data/fastmri \
--num_files -1 \
--num_pd_files -1 \
--num_pdfs_files 0 \
--data_info_file_name pd_train_info
- for
pd
test
python utils/dataset_utils/gen_fastmri_data_info.py \
--data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_dir data/fastmri \
--num_files -1 \
--num_pd_files -1 \
--num_pdfs_files 0 \
--data_info_file_name pd_test_info
- for
pd
6 file test
python utils/dataset_utils/gen_fastmri_data_info.py \
--data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_dir data/fastmri \
--num_files -1 \
--num_pd_files 6 \
--num_pdfs_files 0 \
--data_info_file_name pd_test_6_file_info
- for
pdfs
training
python utils/dataset_utils/gen_fastmri_data_info.py \
--data_dir ../datasets/fastmri/knee_singlecoil_train \
--data_info_dir data/fastmri \
--num_files -1 \
--num_pd_files 0 \
--num_pdfs_files -1 \
--data_info_file_name pdfs_train_info
- for
pdfs
test
python utils/dataset_utils/gen_fastmri_data_info.py \
--data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_dir data/fastmri \
--num_files -1 \
--num_pd_files 0 \
--num_pdfs_files -1 \
--data_info_file_name pdfs_test_info
- for
pdfs
6 file test
python utils/dataset_utils/gen_fastmri_data_info.py \
--data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_dir data/fastmri \
--num_files -1 \
--num_pd_files 0 \
--num_pdfs_files 6 \
--data_info_file_name pdfs_test_6_file_info
We conducted experiments of U-Net and MCDDPM. When training multiple gpus can be used, while only one gpu is used for test.
Take pd4x
as an example.
Train for pd4x
.
SCRIPT_FLAGS="--method_type unet \
--log_dir logs/fastmri/unet/pd4x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_train \
--data_info_list_path data/fastmri/pd_train_info.pkl \
--batch_size 16 --acceleration 4 --num_workers 6"
TRAIN_FLAGS="--microbatch 4 --log_interval 10 --save_interval 5000 --max_step 10000 \
--model_save_dir checkpoints/fastmri/unet/pd4x"
python train.py $SCRIPT_FLAGS $DATASET_FLAGS $TRAIN_FLAGS
We use the default model setting as shown in utils/setting_utils/unet_setting.py
. We can add corresponding arguments to change default setting.
If train the model from last checkpoint, use argument resume_checkpoint
and other arguments will be loaded from last checkpoint setting.
SCRIPT_FLAGS="--method_type unet \
--log_dir logs/fastmri/unet/pd4x"
TRAIN_FLAGS="--model_save_dir checkpoints/fastmri/unet/pd4x \
--resume_checkpoint model005000.pt"
python train.py $SCRIPT_FLAGS $TRAIN_FLAGS
When training for other data, such as pd8x
, pdfs4x
and pdfs8x
, the following arguments should be specified:
- --log_dir
- --data_info_list_path
- --acceleration
- --model_save_dir
- --output_dir
Trained models along with other setting files will be saved in the sub-directory of checkpoints
, which is specified by the argument --model_save_dir
.
Take pd4x
as an example and test 6 volumes. Run the following shell script to reproduce our test result for U-Net.
Test for pd4x
.
SCRIPT_FLAGS="--method_type unet \
--log_dir logs/fastmri/unet/pd4x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_list_path data/fastmri/pd_test_6_file_info.pkl \
--acceleration 4 --num_workers 2"
TEST_FLAGS="--microbatch 10 \
--model_save_dir checkpoints/fastmri/unet/pd4x --resume_checkpoint model010000.pt \
--output_dir outputs/fastmri/unet/pd4x \
--debug_mode False"
python test.py $SCRIPT_FLAGS $DATASET_FLAGS $TEST_FLAGS
When test for other data, such as pd8x
, pdfs4x
and pdfs8x
, the following arguments should be specified:
- --log_dir
- --data_info_list_path
- --acceleration
- --model_save_dir
- --output_dir
We list other shell script as follows.
Test for pd8x
.
SCRIPT_FLAGS="--method_type unet \
--log_dir logs/fastmri/unet/pd8x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_list_path data/fastmri/pd_test_6_file_info.pkl \
--acceleration 8 --num_workers 2"
TEST_FLAGS="--microbatch 10 \
--model_save_dir checkpoints/fastmri/unet/pd8x --resume_checkpoint model010000.pt \
--output_dir outputs/fastmri/unet/pd8x \
--debug_mode False"
python test.py $SCRIPT_FLAGS $DATASET_FLAGS $TEST_FLAGS
Test for pdfs4x
.
SCRIPT_FLAGS="--method_type unet \
--log_dir logs/fastmri/unet/pdfs4x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_list_path data/fastmri/pdfs_test_6_file_info.pkl \
--acceleration 4 --num_workers 2"
TEST_FLAGS="--microbatch 10 \
--model_save_dir checkpoints/fastmri/unet/pdfs4x --resume_checkpoint model010000.pt \
--output_dir outputs/fastmri/unet/pdfs4x \
--debug_mode False"
python test.py $SCRIPT_FLAGS $DATASET_FLAGS $TEST_FLAGS
Test for pdfs8x
.
SCRIPT_FLAGS="--method_type unet \
--log_dir logs/fastmri/unet/pdfs8x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_list_path data/fastmri/pd_test_6_file_info.pkl \
--acceleration 8 --num_workers 2"
TEST_FLAGS="--microbatch 10 \
--model_save_dir checkpoints/fastmri/unet/pdfs8x --resume_checkpoint model010000.pt \
--output_dir outputs/fastmri/unet/pdfs8x \
--debug_mode False"
python test.py $SCRIPT_FLAGS $DATASET_FLAGS $TEST_FLAGS
The result of testing will be saved in the sub-directory of outputs
which is specified by the argument --output_dir
. The output directory contains reconstructions and evaluation metrics.
Take pd4x
as an example.
Train for pd4x
.
SCRIPT_FLAGS="--method_type mcddpm \
--log_dir logs/fastmri/mcddpm/pd4x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_train \
--data_info_list_path data/fastmri/pd_train_info.pkl \
--batch_size 16 --acceleration 4 --num_workers 6"
TRAIN_FLAGS="--microbatch 4 --log_interval 10 --save_interval 5000 --max_step 35000 \
--model_save_dir checkpoints/fastmri/mcddpm/pd4x"
python train.py $SCRIPT_FLAGS $DATASET_FLAGS $TRAIN_FLAGS
We use the default model setting, diffusion setting and schedule sampler setting as shown in utils/setting_utils/mcddpm_setting.py
. We can add corresponding arguments to change default setting.
Trained models along with other setting files will be saved in the sub-directory of checkpoints
, which is specified by the argument --model_save_dir
.
If train the model from last checkpoint, use argument resume_checkpoint
and other arguments will be loaded from last checkpoint setting.
SCRIPT_FLAGS="--method_type mcddpm \
--log_dir logs/fastmri/mcddpm/pd4x"
TRAIN_FLAGS="--model_save_dir checkpoints/fastmri/mcddpm/pd4x \
--resume_checkpoint model005000.pt"
python train.py $SCRIPT_FLAGS $TRAIN_FLAGS
Take pd4x
as an example and test 6 volumes. Run the following shell script to reproduce our test result for MCDDPM.
SCRIPT_FLAGS="--method_type mcddpm \
--log_dir logs/fastmri/mcddpm/pd4x"
DATASET_FLAGS="--dataset fastmri --data_dir ../datasets/fastmri/knee_singlecoil_val \
--data_info_list_path data/fastmri/pd_test_6_file_info.pkl \
--batch_size 20 --acceleration 4 --num_workers 2"
TEST_FLAGS="--model_save_dir checkpoints/fastmri/mcddpm/pd4x --resume_checkpoint model035000.pt \
--output_dir outputs/fastmri/mcddpm/pd4x --num_samples_per_mask 20 \
--debug_mode False"
test.py $SCRIPT_FLAGS $DATASET_FLAGS $TEST_FLAGS
The argument --num_samples_per_mask
is to control the number of construction for one slice. We can also add the argument --timestep_respacing 500
to specify the sampling steps (default is 1000).
When training for other data, such as pd8x
, pdfs4x
and pdfs8x
, the following arguments should be specified:
- --log_dir
- --data_info_list_path
- --acceleration
- --model_save_dir
- --output_dir
The specific settings for pd8x
, pdfs4x
, pdfs8x
are similar to the part of U-Net above.
The result of testing will be saved in the sub-directory of outpus
which is specified by the argument --output_dir
. The output directory contains reconstructions and evaluation metrics.
The trained models can be downloaded from https://drive.google.com/drive/folders/1cR4_6CX8tfGEHz_UytT5QbHKXSEOJOxX?usp=sharing to test the performance.