Skip to content

ThisisJoellovely/100PythonCourse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Working description of what I've learned from the Angela Yu's 100 Days Challenge Of Python Course

Learned So Far

  1. Python Data Structures
  2. Python Modules: Turtle, Pandas, Tkinter
  3. OOP - Object Orinated Programming
  4. Critical Thinking and Design
  5. List and dictionary comprehension
  6. Exception handling
  7. Relational Database and JSON DOC
  8. Debugging
  9. SMTP connection using gmail
  10. Request module in python and basic API commands
  11. Environmental Variables and Open_weather, twillo API, and Google API
  12. HTTPS GET , POST , DELETE and PULL requests
  13. HTML Tags, Breakline Tags, Boiler Plates, Nesting
  14. CSS (External, Internal, Inline) Links and CSS Selector
  15. Selenium module with a variety of projects
  16. Backend Website managment with FLASK Framework
  17. Python Decorators and wrapper functions
  18. Jinja Sytax and url get request with FLASK framework
  19. Bootstrap Basics with Bootstrap FLASK development
  20. SQL Lite with FLASK development & Flask Authentication
  21. 4 Principles of web design Theory (1. Color Theory, 2. Typography, 3. User Interface, 4. User Experience)
  22. RESTful API Development using FLASK framework
  23. Route Checking Authentication (PostMan)
  24. Security & User Authentication with Flask Web-development
  25. Git basic Information (Push-Pull Request, Clone-Fork, Git-ignore, Branching, 4 stage process)
  26. Data Science (EDA, Data Cleaning, Pandas)
  27. Machine Learning (scikit-learn, t-test, and Linear Regression)
  28. Graphing using Matplotlib using pploty w Jupyter Notebook (Markdown Documentation)