Dataset is available for download through Yandex disk -> Click here.
Each directory contain images in .png
format, the filename contain the
class label information.
_dataset/
├── private_test
│ └── *.png
├── publis_test
│ └── *.png
└── train
├── ER
└── NR
Each directory contain bunch of images the image name contain the class label and other informaion.
The most important part is the class label which is in {1.0, 3.0, 6.0, 10.0, 20.0, 30.0} and has _keV
suffix.
0.00012752991074573__CYGNO_60_40_ER_30_keV_930V_30cm_IDAO_iso_crop_hist_pic_run4_ev846;1.png
0.0001805024851534__CYGNO_60_40_ER_10_keV_930V_30cm_IDAO_iso_crop_hist_pic_run2_ev317;1.png
0.00013557143164375__CYGNO_60_40_ER_10_keV_930V_30cm_IDAO_iso_crop_hist_pic_run2_ev842;1.png
0.00019057084775703__CYGNO_60_40_ER_3_keV_930V_30cm_IDAO_iso_crop_hist_pic_run2_ev116;1.png
0.0001135022106767__CYGNO_60_40_ER_10_keV_930V_30cm_IDAO_iso_crop_hist_pic_run5_ev136;1.png
0.0001275016178883__CYGNO_60_40_ER_3_keV_930V_30cm_IDAO_iso_crop_hist_pic_run2_ev485;1.png
0.0001375808674508__CYGNO_60_40_ER_30_keV_930V_30cm_IDAO_iso_crop_hist_pic_run3_ev662;1.png
0.0011665058173393__CYGNO_60_40_ER_10_keV_930V_30cm_IDAO_iso_crop_hist_pic_run5_ev574;1.png
0.0011465791675372__CYGNO_60_40_ER_3_keV_930V_30cm_IDAO_iso_crop_hist_pic_run2_ev114;1.png
0.0011065850424555__CYGNO_60_40_ER_3_keV_930V_30cm_IDAO_iso_crop_hist_pic_run4_ev868;1.png
The total number of samples in the dataset is ~30k sample distributed with 2 classes ER=0 and NR=1. The dataset are interleaved in the following scheme:
Energy | He | e |
---|---|---|
1 | * | - |
3 | - | * |
6 | * | - |
10 | - | * |
20 | * | - |
30 | - | * |
- is training; - is testing
If you want to retrain the model just run:
mv checkpoints checkpoints_bk && python train.py
This will move the original checkpoints and run the experiment again.
Note you can modify config.ini
to loader the checkpoint without moving the files.
To generate the report just run:
python report.py
This will generate ./resultsreport.log
in the current directory containg information and bunch of plots in the ./results/
directory
To generate submission.csv
run:
python generate_submission.py