An experimental async GPU compute library based on wgpu
.
It is meant to be used alongside wgpu
if desired.
To start using gpgpu
, just create a Framework
instance
and follow the examples in the main repository.
Small program that multiplies 2 vectors A and B; and stores the result in another vector C.
use gpgpu::*;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Framework initialization
let fw = Framework::default();
// Original CPU data
let cpu_data = (0..10000).into_iter().collect::<Vec<u32>>();
// GPU buffer creation
let buf_a = GpuBuffer::from_slice(&fw, &cpu_data); // Input
let buf_b = GpuBuffer::from_slice(&fw, &cpu_data); // Input
let buf_c = GpuBuffer::<u32>::with_capacity(&fw, cpu_data.len() as u64); // Output
// Shader load from SPIR-V binary file
let shader = Shader::from_spirv_file(&fw, "<SPIR-V shader path>")?;
// or from a WGSL source file
let shader = Shader::from_wgsl_file(&fw, "<WGSL shader path>")?;
// Descriptor set and program creation
let desc = DescriptorSet::default()
.bind_buffer(&buf_a, GpuBufferUsage::ReadOnly)
.bind_buffer(&buf_b, GpuBufferUsage::ReadOnly)
.bind_buffer(&buf_c, GpuBufferUsage::ReadWrite);
let program = Program::new(&shader, "main").add_descriptor_set(desc); // Entry point
// Kernel creation and enqueuing
Kernel::new(&fw, program).enqueue(cpu_data.len() as u32, 1, 1); // Enqueuing, not very optimus 😅
let output = buf_c.read_vec_blocking()?; // Read back C from GPU
for (a, b) in cpu_data.into_iter().zip(output) {
assert_eq!(a.pow(2), b);
}
Ok(())
}
The shader is written in WGSL
// Vector type definition. Used for both input and output
struct Vector {
data: array<u32>,
}
// A, B and C vectors
@group(0) @binding(0) var<storage, read> a: Vector;
@group(0) @binding(1) var<storage, read> b: Vector;
@group(0) @binding(2) var<storage, read_write> c: Vector;
@compute @workgroup_size(1)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
c.data[global_id.x] = a.data[global_id.x] * b.data[global_id.x];
}