Skip to content

WangYueFt/detr3d

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Object DGCNN & DETR3D

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Prerequisite

  1. mmcv (https://github.com/open-mmlab/mmcv)

  2. mmdet (https://github.com/open-mmlab/mmdetection)

  3. mmseg (https://github.com/open-mmlab/mmsegmentation)

  4. mmdet3d (https://github.com/open-mmlab/mmdetection3d)

Data

  1. Follow the mmdet3d to process the data.

Train

  1. Downloads the pretrained backbone weights to pretrained/

  2. For example, to train Object-DGCNN with pillar on 8 GPUs, please use

tools/dist_train.sh projects/configs/obj_dgcnn/pillar.py 8

Evaluation using pretrained models

  1. Download the weights accordingly.
Backbone mAP NDS Download
DETR3D, ResNet101 w/ DCN 34.7 42.2 model | log
above, + CBGS 34.9 43.4 model | log
DETR3D, VoVNet on trainval, evaluation on test set 41.2 47.9 model | log
Backbone mAP NDS Download
Object DGCNN, pillar 53.2 62.8 model | log
Object DGCNN, voxel 58.6 66.0 model | log
  1. To test, use
    tools/dist_test.sh projects/configs/obj_dgcnn/pillar_cosine.py /path/to/ckpt 8 --eval=bbox

If you find this repo useful for your research, please consider citing the papers

@inproceedings{
   obj-dgcnn,
   title={Object DGCNN: 3D Object Detection using Dynamic Graphs},
   author={Wang, Yue and Solomon, Justin M.},
   booktitle={2021 Conference on Neural Information Processing Systems ({NeurIPS})},
   year={2021}
}
@inproceedings{
   detr3d,
   title={DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries},
   author={Wang, Yue and Guizilini, Vitor and Zhang, Tianyuan and Wang, Yilun and Zhao, Hang and and Solomon, Justin M.},
   booktitle={The Conference on Robot Learning ({CoRL})},
   year={2021}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published