This page will guide you through the steps needed to prepare a computer for development with the Substrate Node Template. Since Substrate is built with the Rust programming language, the first thing you will need to do is prepare the computer for Rust development - these steps will vary based on the computer's operating system. Once Rust is configured, you will use its toolchains to interact with Rust projects; the commands for Rust's toolchains will be the same for all supported, Unix-based operating systems.
Substrate development is easiest on Unix-based operating systems like macOS or Linux. The examples in the Substrate Tutorials and Recipes use Unix-style terminals to demonstrate how to interact with Substrate from the command line.
Open the Terminal application and execute the following commands:
# Install Homebrew if necessary https://brew.sh/
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
# Make sure Homebrew is up-to-date, install openssl and cmake
brew update
brew install openssl cmake
Use a terminal shell to execute the following commands:
sudo apt update
# May prompt for location information
sudo apt install -y cmake pkg-config libssl-dev git build-essential clang libclang-dev curl
Run these commands from a terminal:
pacman -Syu --needed --noconfirm cmake gcc openssl-1.0 pkgconf git clang
export OPENSSL_LIB_DIR="/usr/lib/openssl-1.0"
export OPENSSL_INCLUDE_DIR="/usr/include/openssl-1.0"
Use a terminal to run the following commands:
# Update
sudo dnf update
# Install packages
sudo dnf install cmake pkgconfig rocksdb rocksdb-devel llvm git libcurl libcurl-devel curl-devel clang
For Windows please follow the guide mentioned here
This project uses rustup
to help manage the Rust toolchain. First install
and configure rustup
:
# Install
curl https://sh.rustup.rs -sSf | sh
# Configure
source ~/.cargo/env
Finally, configure the Rust toolchain:
rustup default stable
rustup update nightly
rustup update stable
rustup target add wasm32-unknown-unknown --toolchain nightly
This completes your Rust Installation and Setup.
Let's follow the next steps by First cloning the Substrate_node_template
git clone -b latest --depth 1 https://github.com/substrate-developer-hub/substrate-node-template
cd substrate-node-template
cargo build --release
Follow the steps below to get started with the Node Template, or get it up and running right from your browser in just a few clicks using Playground 🛠️
Use Rust's native cargo
command to build and launch the template node:
cargo run --release -- --dev --tmp
The cargo run
command will perform an initial build. Use the following command to build the node
without launching it:
cargo build --release
Once the project has been built, the following command can be used to explore all parameters and subcommands:
./target/release/node-template -h
The provided cargo run
command will launch a temporary node and its state will be discarded after
you terminate the process. After the project has been built, there are other ways to launch the
node.
This command will start the single-node development chain with persistent state:
./target/release/node-template --dev
Purge the development chain's state:
./target/release/node-template purge-chain --dev
Start the development chain with detailed logging:
RUST_BACKTRACE=1 ./target/release/node-template -ldebug --dev
Once the node template is running locally, you can connect it with Polkadot-JS Apps front-end to interact with your chain. Click here connecting the Apps to your local node template.
A Substrate project such as this consists of a number of components that are spread across a few directories.
A blockchain node is an application that allows users to participate in a blockchain network. Substrate-based blockchain nodes expose a number of capabilities:
- Networking: Substrate nodes use the
libp2p
networking stack to allow the nodes in the network to communicate with one another. - Consensus: Blockchains must have a way to come to consensus on the state of the network. Substrate makes it possible to supply custom consensus engines and also ships with several consensus mechanisms that have been built on top of Web3 Foundation research.
- RPC Server: A remote procedure call (RPC) server is used to interact with Substrate nodes.
There are several files in the node
directory - take special note of the following:
chain_spec.rs
: A chain specification is a source code file that defines a Substrate chain's initial (genesis) state. Chain specifications are useful for development and testing, and critical when architecting the launch of a production chain. Take note of thedevelopment_config
andtestnet_genesis
functions, which are used to define the genesis state for the local development chain configuration. These functions identify some well-known accounts and use them to configure the blockchain's initial state.service.rs
: This file defines the node implementation. Take note of the libraries that this file imports and the names of the functions it invokes. In particular, there are references to consensus-related topics, such as the longest chain rule, the Aura block authoring mechanism and the GRANDPA finality gadget.
After the node has been built, refer to the embedded documentation to learn more about the capabilities and configuration parameters that it exposes:
./target/release/node-template --help
In Substrate, the terms "runtime" and "state transition function" are analogous - they refer to the core logic of the blockchain that is responsible for validating blocks and executing the state changes they define. The Substrate project in this repository uses the FRAME framework to construct a blockchain runtime. FRAME allows runtime developers to declare domain-specific logic in modules called "pallets". At the heart of FRAME is a helpful macro language that makes it easy to create pallets and flexibly compose them to create blockchains that can address a variety of needs.
Review the FRAME runtime implementation included in this template and note the following:
- This file configures several pallets to include in the runtime. Each pallet configuration is
defined by a code block that begins with
impl $PALLET_NAME::Config for Runtime
. - The pallets are composed into a single runtime by way of the
construct_runtime!
macro, which is part of the core FRAME Support library.
The runtime in this project is constructed using many FRAME pallets that ship with the
core Substrate repository and a
template pallet that is defined in the pallets
directory.
A FRAME pallet is compromised of a number of blockchain primitives:
- Storage: FRAME defines a rich set of powerful storage abstractions that makes it easy to use Substrate's efficient key-value database to manage the evolving state of a blockchain.
- Dispatchables: FRAME pallets define special types of functions that can be invoked (dispatched) from outside of the runtime in order to update its state.
- Events: Substrate uses events to notify users of important changes in the runtime.
- Errors: When a dispatchable fails, it returns an error.
- Config: The
Config
configuration interface is used to define the types and parameters upon which a FRAME pallet depends.
First, install Docker and Docker Compose.
Then run the following command to start a single node development chain.
./scripts/docker_run.sh
This command will firstly compile your code, and then start a local development network. You can
also replace the default command
(cargo build --release && ./target/release/node-template --dev --ws-external
)
by appending your own. A few useful ones are as follow.
# Run Substrate node without re-compiling
./scripts/docker_run.sh ./target/release/node-template --dev --ws-external
# Purge the local dev chain
./scripts/docker_run.sh ./target/release/node-template purge-chain --dev
# Check whether the code is compilable
./scripts/docker_run.sh cargo check