Skip to content

[KDD'24] Official code for our paper "Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting".

Notifications You must be signed in to change notification settings

XDZhelheim/HimNet

Repository files navigation

[KDD'24] Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting

Zheng Dong*, Renhe Jiang*, Haotian Gao, Hangchen Liu, Jinliang Deng, Qingsong Wen, and Xuan Song#. 2024. Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24). (*Equal Contribution, #Corresponding Author)

ACM    Arxiv link (including additional PEMS03 results)

method

Citation

@inproceedings{dong2024heterogeneity,
  title={Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting},
  author={Dong, Zheng and Jiang, Renhe and Gao, Haotian and Liu, Hangchen and Deng, Jinliang and Wen, Qingsong and Song, Xuan},
  booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages={631--641},
  year={2024}
}

Performance on Spatiotemporal Forecasting Benchmarks

HimNet-table-03

Required Packages

pytorch>=1.12
numpy
pandas
matplotlib
pyyaml
torchinfo

Training Commands

cd scripts/
python train.py -d <dataset> -g <gpu_id>

<dataset>:

  • METRLA
  • PEMSBAY
  • PEMS03
  • PEMS04
  • PEMS07
  • PEMS08

About

[KDD'24] Official code for our paper "Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published