XeDocs manages tracking versioned detector numbers, replacing CMT and ideally all hard-coded values. XeDocs both looks up data from its own online database, and uses straxen URL-style lookup to find other resources. To upload data to the XeDocs database, you must submit it as a PR to https://github.com/XENONnT/corrections
- Read data from multiple formats (e.g. mongodb, pandas) and locations with a simple unified interface.
- Custom logic implemented on the document class, e.g. creating a tensorflow model from the data etc.
- Multiple APIs for reading data, fun functional, ODM style, pandas and xarray.
- Read data as objects, dataframes, dicts, json.
- Write data to multiple storage backends with the same interface
- Custom per-collection rules for data insertion, deletion and updating.
- Schema validation and type coercion so storage has uniform and consistent data.
- Custom panel widgets for graphical representation of data, web client
- Auto-generated API server and client + openapi documentation
- CLI for viewing and downloading data
Explore the available schemas
import xedocs
>>> xedocs.list_schemas()
>>> ['detector_numbers',
'fax_configs',
'plugin_lineages',
'context_lineages',
'pmt_area_to_pes',
'global_versions',
'electron_drift_velocities',
...]
>>> xedocs.help('pmt_area_to_pes')
>>>
Schema name: pmt_area_to_pes
Index fields: ['version', 'time', 'detector', 'pmt']
Column fields: ['created_date', 'comments', 'value']
Read/write data from the shared development database, this database is writable from the default analysis username/password
import xedocs
db = xedocs.development_db()
docs = db.pmt_area_to_pes.find_docs(version='v1', pmt=[1,2,3,5], time='2021-01-01T00:00:00', detector='tpc')
to_pes = [doc.value for doc in docs]
# passing a run_id will attempt to fetch the center time of that run from the runs db
doc = db.pmt_area_to_pes.find_one(version='v1', pmt=1, run_id=25000, detector='tpc')
to_pe = doc.value
Read from the straxen processing database, this database is read-only for the default analysis username/password
import xedocs
db = xedocs.straxen_db()
...
Read from the the corrections gitub repository, this database is read-only
import xedocs
db = xedocs.corrections_repo(branch="master")
...
If you cloned the corrections gitub repo to a local folder, this database can be read too
import xedocs
db = xedocs.local_folder(PATH_TO_REPO_FOLDER)
...
Read data from alternative data sources specified by path, e.g csv files which will be loaded by pandas.
from xedocs.schemas import DetectorNumber
g1_doc = DetectorNumber.find_one(datasource='/path/to/file.csv', version='v1', field='g1')
g1_value = g1_doc.value
g1_error = g1_doc.uncertainty
The path can also be a github URL or any other URL supported by fsspec.
from xedocs.schemas import DetectorNumber
g1_doc = DetectorNumber.find_one(
datasource='github://org:repo@/path/to/file.csv',
version='v1',
field='g1')
Supported data sources
- MongoDB collections
- TinyDB tables
- JSON files
- REST API clients
Please open an issue on rframe if you want support for an additional data format.
If you want a new datasource to be available from a schema class, you can register it to the class:
from xedocs.schemas import DetectorNumber
DetectorNumber.register_datasource('github://org:repo@/path/to/file.csv', name='github_repo')
# The source will now be available under the given name:
g1_doc = DetectorNumber.github_repo.find_one(version='v1', field='g1')
Full documentation hosted by Readthedocs
This package was created with Cookiecutter and the briggySmalls/cookiecutter-pypackage project template.