NeuRank: Learning to Ranking with Neural Networks for Drug-Target Interaction Prediction
主要库版本: tensorflow 1.14.0
- Run NeuRank:
$ python NeuRank.py --path datasets/ --data_name Enzyme --epoches 40 --batch_size 64 --num_factors 64 --layers [32,16] --reg 0.00001 --num_neg 4 --lr 0.001 --min_loss 0.01 --cv 10 --mode 0
- Run NeuRanks:
$ python NeuRanks.py --path datasets/ --data_name Enzyme --epoches 100 --batch_size 64 --num_factors 64 --layers [32,16] --reg [0.00001,0.000001,0.000001] --num_neg 4 --lr 0.001 --min_loss 0.01 --cv 10 --mode 0
- Run pNeuRank:
$ python pNeuRank.py --path datasets/ --data_name Enzyme --epoches 40 --batch_size 64 --num_factors 64 --layers [32] --reg 0.00001 --num_neg 4 --lr 0.001 --min_loss 0.1 --cv 10 --mode 0
- path:Input data path.
- data_name:Name of dataset
- epoches:Number of epoches.
- batch_size:Batch size.
- num_factors:Embedding size.
- layers:Size of each layer. Note that the first hidden layer is the interaction layer.
- reg: Regularization for user and item embeddings.
- num_neg: Number of negative instances to pair with a positive instance.
- lr: Learning rate.
- min_loss: The minimum value for stopping loss function.
- cv: K-fold Cross Validation.
- mode: the mode for training: 0 -> train for drug-target pairs; 1 -> train for new drugs; 2 -> train for new target
Homepage: http://zhouxiuze.com
个人博客: http://snailwish.com/