Skip to content

NeuRank: Learning to Ranking with Neural Networks for Drug-Target Interaction Prediction

Notifications You must be signed in to change notification settings

XiuzeZhou/NeuRank

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NeuRank

NeuRank: Learning to Ranking with Neural Networks for Drug-Target Interaction Prediction

主要库版本: tensorflow 1.14.0

  • Run NeuRank:

$ python NeuRank.py --path datasets/ --data_name Enzyme --epoches 40 --batch_size 64 --num_factors 64 --layers [32,16] --reg 0.00001 --num_neg 4 --lr 0.001 --min_loss 0.01 --cv 10 --mode 0

  • Run NeuRanks:

$ python NeuRanks.py --path datasets/ --data_name Enzyme --epoches 100 --batch_size 64 --num_factors 64 --layers [32,16] --reg [0.00001,0.000001,0.000001] --num_neg 4 --lr 0.001 --min_loss 0.01 --cv 10 --mode 0

  • Run pNeuRank:

$ python pNeuRank.py --path datasets/ --data_name Enzyme --epoches 40 --batch_size 64 --num_factors 64 --layers [32] --reg 0.00001 --num_neg 4 --lr 0.001 --min_loss 0.1 --cv 10 --mode 0

Parameter description:

  • path:Input data path.
  • data_name:Name of dataset
  • epoches:Number of epoches.
  • batch_size:Batch size.
  • num_factors:Embedding size.
  • layers:Size of each layer. Note that the first hidden layer is the interaction layer.
  • reg: Regularization for user and item embeddings.
  • num_neg: Number of negative instances to pair with a positive instance.
  • lr: Learning rate.
  • min_loss: The minimum value for stopping loss function.
  • cv: K-fold Cross Validation.
  • mode: the mode for training: 0 -> train for drug-target pairs; 1 -> train for new drugs; 2 -> train for new target

Homepage: http://zhouxiuze.com

个人博客: http://snailwish.com/

About

NeuRank: Learning to Ranking with Neural Networks for Drug-Target Interaction Prediction

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published