forked from pybop-team/PyBOP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
draft of Parameters extension for multivariate priors
- Loading branch information
1 parent
15e75fc
commit 6ef018a
Showing
1 changed file
with
96 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import numpy as np | ||
|
||
from pybop import MultivariatePrior, Parameters | ||
|
||
|
||
class MultivariateParameters(Parameters): | ||
""" | ||
Represents a correlated set of uncertain parameters within the PyBOP | ||
framework. | ||
This class encapsulates the definition of each of its parameters, | ||
including their names, bounds, and margins to ensure the parameter | ||
stays within feasible limits during optimisation or sampling. | ||
Parameters | ||
---------- | ||
parameter_list : pybop.Parameter or Dict | ||
prior : pybop.MultivariatePrior | ||
The joint multivariate prior. | ||
""" | ||
|
||
def __init__(self, *args, prior=None): | ||
self.prior = prior | ||
super().__init__(*args) | ||
for param in self.param.values(): | ||
# Ensure that no individual priors are mixed with the joint | ||
# one. They may have been used for setting boundaries. | ||
param.prior = None | ||
|
||
def get_margins(self) -> list: | ||
""" | ||
Collects the margins of all parameters. | ||
Returns | ||
------- | ||
array-like | ||
A list of the margin attributes of each parameter. | ||
""" | ||
return [param.margin for param in self.param.values()] | ||
|
||
def rvs( | ||
self, n_samples: int = 1, random_state=None, apply_transform: bool = False | ||
) -> np.ndarray: | ||
""" | ||
Draw random samples from the joint parameters prior distribution. | ||
The samples are constrained to be within each parameter's bounds, | ||
excluding a pre-defined margin at the boundaries. | ||
Parameters | ||
---------- | ||
n_samples : int | ||
The number of samples to draw (default: 1). | ||
random_state : int, optional | ||
The random state seed for reproducibility (default: None). | ||
apply_transform : bool | ||
If True, the transformation is applied to the output | ||
(default: False). | ||
Returns | ||
------- | ||
array-like | ||
A matrix (i.e., a 2D array) of samples drawn from the | ||
joint prior distribution inside parameter boundaries. | ||
""" | ||
samples = self.prior.rvs(n_samples, random_state=random_state) | ||
|
||
# Constrain samples to be within bounds. | ||
bounds = self.get_bounds(apply_transform=False) | ||
margins = self.get_margins() | ||
for i in len(samples): | ||
offset = margins[i] * (bounds["upper"][i] - bounds["lower"][i]) | ||
samples[i] = np.clip( | ||
samples[i], bounds["lower"][i] + offset, bounds["upper"][i] + offset | ||
) | ||
|
||
transformations = self.get_transformations() | ||
if apply_transform: | ||
for i in len(samples): | ||
if transformations[i]: | ||
samples[i] = np.asarray( | ||
[transformations[i].to_search(x) for x in samples[i]] | ||
) | ||
|
||
return samples | ||
|
||
def get_sigma0(self, apply_transform: bool = False) -> list: | ||
if apply_transform: | ||
raise NotImplementedError("Correlations may not sensibly transform.") | ||
try: | ||
return self.prior.sigma | ||
except NotImplementedError: | ||
return | ||
|
||
def priors(self) -> MultivariatePrior: | ||
return self.prior |