Skip to content

Ybowei/P-CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

P-CNN : Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images

Code for reproducing the results in the following paper, and the code is built on top of MetaR-CNN

P-CNN : Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images

Gong Cheng, Bowei Yan, Peizhen Shi, Ke Li, Xiwen Yao, Lei Guo, and Junwei Han

License

For Academic Research Use Only!

Requirements

  • python packages

    • Python = 3.6

    • PyTorch = 0.3.1

      This project can not support pytorch 0.4, higher version will not recur results.

    • Torchvision >= 0.2.0

    • cython

    • pyyaml

    • easydict

    • opencv-python

    • matplotlib

    • numpy

    • scipy

    • tensorboardX

  • CUDA 8.0

  • gcc >= 4.9

Misc

Tested on Ubuntu 16.04 with a Titan X GPU (12G)

Getting Started

Clone the repo:

https://github.com/Ybowei/P-CNN.git

Compilation

Compile the CUDA dependencies:

cd {repo_root}/lib
sh make.sh

It will compile all the modules you need, including NMS, ROI_Pooing, ROI_Crop and ROI_Align

Data Preparation

create a data folder under the repo,

cd {repo_root}
mkdir data

DIOR: Please download the DIOR dataset and use the horizontal box annotation. After downloading the data, create softlinks in the folder data/.

please put the four base classes splits into DIOR ImageSets/Main dirs.

Training

We used ResNet101 pretrained model on ImageNet in our experiments. Download it and put it into the data/pretrained_model/.

for example, if you want to train the first split of base and novel class with meta learning, just run:

the first phase

$>CUDA_VISIBLE_DEVICES=0 python train_pcnn.py --dataset dior --epochs 21 --bs 4 --nw 8 --log_dir checkpoint --save_dir models/meta/first --meta_type 1 --meta_train True --meta_loss True 

the second phase

$>CUDA_VISIBLE_DEVICES=0 python train_pcnn.py --dataset dior --epochs 30 --bs 4 --nw 8 --log_dir checkpoint --save_dir models/meta/first --r True --checksession 200 --checkepoch 20 --checkpoint 1898 --phase 2 --shots 3 --meta_train True --meta_loss True --meta_type 1

Testing

if you want to evaluate the performance of meta trained model, simply run:

$>CUDA_VISIBLE_DEVICES=0 python test_pcnn.py --dataset dior --net Prototypecnn --load_dir models/meta/first  --checksession 3 --checkepoch 29 --checkpoint 78 --shots 3  --meta_type 1 --meta_test True --meta_loss True --phase 2

Citation

@ARTICLE{9435769,
  author={Cheng, Gong and Yan, Bowei and Shi, Peizhen and Li, Ke and Yao, Xiwen and Guo, Lei and Han, Junwei},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images}, 
  year={2021},
  volume={},
  number={},
  pages={1-10},
  doi={10.1109/TGRS.2021.3078507}}

About

Prototype-cnn

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published